Cho a là số vô ti , b là số hữu tỉ .Chug tỏ ab là số vô tỉ .
Cho a là số vô tỉ , b là số hữu tỉ .Chứng tỏ ab là số vô tỉ ?
Giả sử ab là số hữu tỉ :ab =c (hữu tỉ )
\(\Rightarrow a=\frac{c}{b}\in Q\).Vô lí vì a là số vô tỉ
Bài toán tương tự :\(a\in I;b\in Q\Rightarrow\frac{a}{b}\in I\)
Cho x là số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rằng : x + y và x.y là những số vô tỉ.
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
cho a+b là số hữu tỉ .hỏi b là số hữu tỉ hay vô tỉ nếu :
a là số hữu tỉ
a là số vô tỉ
cho x là một số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rằng x+ y và x .y là những số vô tỉ.
Giả sử x + y = z là một số hữu tỉ.
Suy ra y = z –x ta có z hữu tỉ, x hữu tỉ thì z – x là một số hữu tỉ
Hay y ∈ Q trái giả thiết y là số vô tỉ
Vậy x + y là số vô tỉ
Giả sử z = x.y là một số hữu tỉ
Suy ra y = z : x mà x ∈ Q, z ∈ Q
Suy ra y ∈ Q trái giả thiết y là số vô tỉ
Vậy xy là số vô tỉ
cho x là số hữu tỉ khác 0 ; y là số vô tỉ . chứng tỏ rằng : x+y ; x-y ; x:y là những số vô tỉ
Giả sử x+y=z là một số hữu tỉ, khi đó ta có y=z-x
vì z và x thuộc Q nên z-x thuộc Q, do đó y thuộc Q. Điều này trái với đề bài.
Vậy x+y là số vô tỉ
Chứng minh tương tự x-y là số vô tỉ
Giả sử x.y=z là một số hữu tỉ, khi đó ta có y=z\x. Vì x, y thuộc Q nên z\x thuộc Q,
do đó y thuộc Q. Điều này trái với đề bài. Vậy x.y là một số vô tỉ
Chứng minh tương tự x:y là số vô tỉ
Cho x là một số hữu tỉ khác 0, y là một số vô tỉ. Chứng tỏ rắng x + y và x.y là nhứng số vô tỉ
biết a là số vô tỉ .Hỏi b là số vô tỉ hay hữu tỉ nếu:
a) a+b là số hữu tỉ ?
b) a.b là số hữu tỉ ?
biết a là số vô tỉ .Hỏi b là số vô tỉ hay hữu tỉ nếu:
a) a+b là số hữu tỉ ?
b) a.b là số hữu tỉ ?
Biết a là số vô tỉ. Hỏi b là số vô tỉ hay hữu tỉ, nếu: a + b là số vô tỉ?
Đặt tổng a + b = c khi đó c là số hữu tỉ ( giả thiết).
⇒ a = c –b
Vì a là số vô tỉ và c là số hữu tỉ nên b là số vô tỉ