Chứng minh rằng:
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}< \frac{2013}{2014}\)
Chứng minh:\(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+........+\frac{1}{2014^2}< \frac{2013}{2014}\)
Ta có: \(\frac{1}{2^2}=\frac{1}{2.2}< \frac{1}{1.2}\)
Tương tự : \(\frac{1}{3^2}< \frac{1}{2.3}\); \(\frac{1}{4^2}< \frac{1}{3.4}\); ......... ; \(\frac{1}{2014^2}< \frac{1}{2013.2014}\)
\(\Rightarrow S< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+........+\frac{1}{2013.2014}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{2013}-\frac{1}{2014}\)
\(=1-\frac{1}{2014}=\frac{2013}{2014}\)
\(\Rightarrow S< \frac{2013}{2014}\left(đpcm\right)\)
Chứng minh rằng
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2014^2}>\frac{2013}{4030}\)
Đặt \(S=\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{2014^2}\)
Đặt A=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+........+\frac{1}{2014.2015}\)
\(A=\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+.....\left(\frac{1}{2014}-\frac{1}{2015}\right)\\ =>A=\frac{1}{2}-\frac{1}{2015}\\ =>A=\frac{2013}{4030}\)
Mà S>A =>S>\(\frac{2013}{4030}\)
Chứng minh rằng : \(\frac{1}{4028}< \left(\frac{1}{2}.\frac{3}{4}.....\frac{2011}{2012}.\frac{2013}{2014}\right)^2< \frac{1}{2015}\)
\(\frac{\frac{1}{2}+\frac{1}{3}+......+\frac{1}{2013}}{\frac{2012}{1}+\frac{2012}{2}+\frac{2011}{3}+...+\frac{1}{2013}}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+..+\frac{1}{2013}}{\frac{2012}{1}+2+\frac{2012}{2}+1+\frac{2011}{3}+1+...+\frac{1}{2013}+1-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{\frac{2014}{1}+\frac{2014}{2}+...+\frac{2014}{2013}-2014}\)
=\(\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}{2014\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}-1\right)}\)
=\(\frac{1}{2014}\)
Chứng minh: \(\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+..+\frac{n}{2^n}+...+\frac{2013}{2^{2013}}+\frac{2014}{2^{2014}}<2\)
A=\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+.....+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{2014}+\frac{1}{2015}}\)=
Xét Tử số của A ta có:
\(2014+\frac{2013}{2}+\frac{2012}{3}+....+\frac{2}{2013}=1+\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+....+\left(\frac{1}{2014}+1\right)\)\(TS=\frac{2015}{2}+\frac{2015}{3}+....+\frac{2015}{2014}+\frac{2015}{2015}\)
\(TS=2015.\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)\)
\(A=\frac{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)}{\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2015}\right)}=2015\)
toán lớp 8 dễ quá vậy
A=2015
hình như thế
chứng minh\(\frac{1}{2}-\frac{1}{3}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2012}-\frac{1}{2013}+\frac{1}{2014}< \frac{2}{5}\)
Tính giá trị biểu thức \(S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}}{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}}\) .
\(S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}}\)
Xét mẫu:
\(\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\)
= \(\left(1+\frac{2013}{2}\right)+\left(1+\frac{2012}{3}\right)+...+\left(1+\frac{1}{2014}\right)+1\)
= \(\frac{2014}{2}+\frac{2014}{3}+....+\frac{2014}{2013}+\frac{2014}{2014}\)
= \(2014\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)\)
\(\Rightarrow S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}}{2014.\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2014}\right)}\)
\(\Rightarrow S=\frac{1}{2014}\)
Tính giá trị biểu thức \(S=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}+\frac{1}{2014}}{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}}\) .