Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
GoKu Đại Chiến Super Man
Xem chi tiết
Nguyễn Trọng Thắng
Xem chi tiết
Đặng Ngọc Quỳnh
9 tháng 3 2021 lúc 13:02

a) \(A=\frac{8n+193}{4n+3}=\frac{2\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)

Để \(A\inℕ\Rightarrow187⋮4n+3\Rightarrow4n+3\in\left\{17;11;187\right\}\)

\(4n+3=11\Leftrightarrow n=2\)

\(4n+3=187\Leftrightarrow n=46\)

\(4n+3=17\Leftrightarrow4n=14\) ( không tồn tại \(n\inℕ\))

Vậy n=2, 46

b) A tối giản khi 187 và 4n+3 có ƯCLN =1

\(\Rightarrow n\ne11k+2\left(k\inℕ\right)\)

\(n\ne17m+12\left(m\inℕ\right)\)

c) \(n=156\Rightarrow A=\frac{17}{19}\)

\(n=165\Rightarrow A=\frac{89}{39}\)

\(n=167\Rightarrow A=\frac{139}{61}\)

Khách vãng lai đã xóa
MOUSE14092009
21 tháng 3 2021 lúc 20:45

Làm thế này mới đúng

Khách vãng lai đã xóa
Ngọc Hân Cao Dương
Xem chi tiết
lewandoski
Xem chi tiết
DIABLO
Xem chi tiết
Vanh Leg
20 tháng 12 2018 lúc 21:39

Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)

Ta có bảng :

3n + 4171391
n-11329
nhận xétloạithỏa mãnthỏa mãnthỏa mãn

Vậy ......

b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)

=> 3n + 4 ko chia hết cho ước nguyên tố của 91

=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)

=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)

phamnhatquang
Xem chi tiết
phamnhatquang
Xem chi tiết
Lê Chí Cường
18 tháng 7 2015 lúc 21:20

Để 8n+193/4n+3 có giá trị là số tự nhiên.

=> 8n+193 chia hết cho 4n+3

=> 8n+6+187 chia hết cho 4n+3

=> 2.(4n+3)+187 chia hết cho 4n+3

=> 187 chia hết cho 4n+3

=> 4n+3=Ư(187)=(1,11,17,187)

=> 4n=(-2,8,14,184)

mà 4n chia hết cho 4.

=> 4n=(8,184)

=> n=(2,46)

Vậy n=2,46

l-i-k-e cho mình đi mình làm tiếp câu b cho.

Nguyễn Huy Hoàng
18 tháng 7 2015 lúc 21:31

a) Đặt \(A=\frac{8n+193}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{4n+3}\)

\(\Rightarrow187\div4n+3\Rightarrow4n+3\inƯ\left(187\right)=\left\{17;11;187\right\}\)

+ 4n + 3 = 11  => n = 2

+ 4n +3 = 187 => n = 46

+ 4n + 3 = 17 => 4n = 14 ( loại )

Vậy n = 2 và 46

B)  Gọi ƯCLN ( 8n + 193; 4n + 3) = d

=>   ( 8n + 193; 4n + 3 ) : d => (8n + 193) - 2.(4n+3)

 =>   ( 8n+193 ) - ( 8n + 6 ) : d

=> 187 : d mà A là phân số tối giản => A \(\ne\) 187

=> n \(\ne\)  11k + 2 (k \(\in\) N)

=>  n \(\ne\)  17m + 12 (m  \(\in\) N )

c) n = 156 => A = 77/19

     n = 165 => A =  89/39 

      n = 167 => A = 139/61

 

 

 

           

Nguyễn Ngọc Linh
12 tháng 3 2016 lúc 19:33

lam tiep cau b di

bùi thị bích ngọc
Xem chi tiết
Vanh Leg
20 tháng 12 2018 lúc 21:40

Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)

Ta có bảng :

3n + 4171391
n-11329
nhận xétloạithỏa mãnthỏa mãnthỏa mãn

Vậy ......

b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)

=> 3n + 4 ko chia hết cho ước nguyên tố của 91

=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)

=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)

Nguyễn Như Đạt
Xem chi tiết
Nguyễn Tiến Dũng
24 tháng 5 2017 lúc 18:47

a)\(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=\frac{2.\left(4n+3\right)+187}{4n+3}=2+\frac{187}{n+3}\)

=>n+3 thuộc Ư(187)

n+31-117-17187-187
n-2-414-20184-190
Nguyễn Tiến Dũng
24 tháng 5 2017 lúc 18:52

mk nhầm

4n+3 thuộc Ư(187)

4n+31-117-17-187187
n-2-13,5 loại-5-47,5 loại46
Vanh Leg
20 tháng 12 2018 lúc 21:38

Đặt \(A=\frac{6n+99}{3n+4}=\frac{6n+8+91}{3n+4}=\frac{2\left(3n+4\right)91}{3n+4}+\frac{91}{3n+4}=2+\frac{91}{3n+4}\)

a) Để A là số tự nhiên thì \(91⋮3n+4⋮3n+4\)là ước của 91 hay 3n + 4 \(\in\left\{1;7;13;91\right\}\)

Ta có bảng :

3n + 4171391
n-11329
nhận xétloạithỏa mãnthỏa mãnthỏa mãn

Vậy ......

b) Để A là phân số tối giản thì \(91\text{không chia hết cho 3n + 4 hay 3n + 4 không là ước của 91}\)

=> 3n + 4 ko chia hết cho ước nguyên tố của 91

=> 3n + 4 ko chia hết cho 7 => \(n\ne7k+1\)

=> 3n + 4 ko chia hết cho 13 => \(n\ne13m+3\)