Cho A=1/2+3/2+(3/2)2+(3/2)4+........+(3/2)2012 và B=(3/2)2012:2
Tính B-A
cho a 1+ 3+3^2+3^3+3^4+..........3^2012
b = 3^2012:2
tinh a-b
so sánh giá trị của biểu thức sau A=1+(1+2)+(1+2+3)+.......+(1+2+3+...+2012) và B=1×2012+2×2011+3×2010+....+2012×1
Xét biểu thức A
A= 1+(1+2) +....... +(1+2+3+...+2012)
A = 1+1+2+1+2+3+...+1+2+3+...+2012
A có 2012 số 1
có 2011 số 2
...
có 1 số 2012
A = 1 x2012 +2x2011+...+2012x1
mà B = 1 x2012 +2x2011+...+2012x1
nên A=B
\(A=1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2012\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+...+2012\)
\(=1\times2012+2\times2011+...+2012\times1\)
\(=B\)
Cho A = 1/2×2+1/3×3+1/4×4+...+1/2012×2012
a)so sánh A với 1
b)so sánh A với 3/4
\(\frac{1}{2.2}< \frac{1}{1.2}\)
\(\frac{1}{3.3}< \frac{1}{2.3}\)
......
\(\frac{1}{100.100}< \frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+\frac{1}{3.3}+...+\frac{1}{100.100}< \frac{1}{1.2}+..+\frac{1}{99.100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}...+\frac{1}{99}-\frac{1}{100}\)
\(\Rightarrow\frac{1}{2.2}+..+\frac{1}{100.100}< 1-\frac{1}{100}< 1\).Suy ra điều phải chứng minh. câu b tương tự. bấm đúng cho mình nha
Bài 1
so sanh 2010/2011+2011/2012+2012/2013+2013/2010 với 4
Bài 2
A=2011+2012/2012+2013 và B=2011/2012+2012/2013
Bài 3
E=1/3+2/32+3/33+..+100/3100
Chứng minh E<3/4
Cho a =1/2+3/2+(3/2)^2+(3/2)^3+(3/2)^4+...+(3/2)^2012 và b=(3/2)^2013:2. Tính b_a
Cho A = 1/2+3/2+(3/2)2+(3/2)3+(3/2)4+...+(3/2)2012 và B = (3/2)2013:2.Tính B-A
Cho A=1/2+3/2+3/2^2+(3/2)^2+(3/2)^3+...+(3/2)^2012 và B=(3/2)^2013:2
Tính B-A.
Cho A=1/2+3/2+(3/2)^2+...+(3/2)^2012 và B=(3/2)2013 :2.Tính A-B
Lời giải:
Ta có:
\(A-\frac{1}{2}=\frac{3}{2}+(\frac{3}{2})^2+...+(\frac{3}{2})^{2012}\)
\(\frac{3}{2}(A-\frac{1}{2})=(\frac{3}{2})^2+(\frac{3}{2})^3+....+(\frac{3}{2})^{2013}\\ \Rightarrow \frac{3}{2}(A-\frac{1}{2})-(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}\)
$\Rightarrow \frac{1}{2}(A-\frac{1}{2})=(\frac{3}{2})^{2013}-\frac{3}{2}$
$A-\frac{1}{2}=2(\frac{3}{2})^{2013}-3$
$A=2(\frac{3}{2})^{2013}-2,5$
$\Rightarrow A-B=2(\frac{3}{2})^{2013}-2,5-(\frac{3}{2})^{2013}:2$
$=\frac{3}{2}(\frac{3}{2})^{2013}-2,5=(\frac{3}{2})^{2014}-2,5$