Cho B=\(\frac{n+5}{2n+3}\)(n\(\in\)Z)
Tìm n để B có giá trị là 1 số nguyên dương
1`,
a,Chúng tỏ rằng p/s \(\frac{2n+5}{n+3}\left(n\in N\right)\)là p/s tối giản
b,Tìm \(n\in z\)để B=\(\frac{2n}{n+3}+\frac{5}{n+3}\)có giá trị là số nguyên
a, Gọi ƯCLN 2n + 5 ; n + 3 = d \(\left(d\inℕ^∗\right)\)
Ta có : \(2n+5⋮d\)(1)
\(n+3⋮d\Rightarrow2n+6⋮d\)(2)
Lấy (2) - (1) ta được : \(2n+6-2n-5⋮d\Rightarrow1⋮d\Rightarrow d=1\)
b, Để \(B=\frac{2n}{n+3}+\frac{5}{n+3}=\frac{2n+5}{n+3}\)nhận giá trị nguyên khi
\(2n+5⋮n+3\Leftrightarrow2\left(n+3\right)-1⋮n+3\)
\(\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)
n + 3 | 1 | -1 |
n | -2 | -4 |
a) Cho \(A=\frac{2n-5}{n+3}\) . Tìm các giá trị của n để A có giá trị nguyên
b) Tìm n thuộc Z để tích các số hữu tỉ \(\frac{19}{n-1}.\frac{n}{9}\) có gía trị là số nguyên
a)\(A=\frac{2n-5}{n+3}=\frac{2n+6-11}{n+3}=\frac{2n+6}{n+3}-\frac{11}{n+3}=2-\frac{11}{n+3}\)
\(2\in Z\Rightarrow\)Để \(A=2-\frac{11}{n+3}\in Z\)thì \(\frac{11}{n+3}\in Z\Rightarrow n+3\inƯ\left(11\right)\)
\(Ư\left(11\right)=\left(\pm1;\pm11\right)\Rightarrow n+3=\left(\pm1;\pm11\right)\)
*\(n+3=1\Rightarrow n=-2\)
*\(n+3=-1\Rightarrow n=-4\)
*\(n+3=11\Rightarrow n=8\)
*\(n+3=-11\Rightarrow n=-14\)
Cho A=\(\frac{n+1}{2n-1}\)(n thuộc Z)
Tìm n để A có giá trị là 1 số nguyên dương
Để A nguyên dương
=> n + 1 \(⋮\)2n - 1
Tiếp theo dễ rồi nhé :)
Để \(\frac{n+1}{2n-1}\) là 1 số nguyên số
\(\Rightarrow n+1⋮2n-1\)
\(\Rightarrow2\left(n-1\right)+3⋮2n-1\)
\(\Rightarrow3⋮2n-1\)
\(\Rightarrow2n-1\inƯ\left(3\right)\) Mà n là 1 số nguyên dương
\(\Rightarrow2n-1\in\left\{1;3\right\}\)
\(\Rightarrow2n\in\left\{2;4\right\}\)
\(\Rightarrow n\in\left\{1;2\right\}\)
Cho phân số A=5n+2/2n+7 (n thuộc z)
a)Tìm n thuộc z để A có giá trị bằng 7/9
b)Tìm n thuộc z để A có giá trị là số nguyên
c)Có bao nhiêu số nguyên dương n bé hơn 2016 để A là phân số tối giản ?
cho \(A=\frac{4n+1}{2n+1}\left(n\in z\right)\)
a,Tìm số nguyên n để \(A\)có giá trị là số nguyên ?
b,Tìm n để \(A\)đạt giá trị lớn nhất ? giá trị nhỏ nhất ?
\(Cho\)\(A=\frac{4n+1}{2n+3}\left(n\in Z\right)\)
\(a.\)Tìm n để A có giá trị là 1 số nguyên.
b. Tìm n để A đạt giá trị lớn nhất , nhỏ nhất.
Mn giúp mk nha.
\(A=\frac{4n+1}{2n+3}=\frac{4n+6}{2n+3}-\frac{5}{2n+3}=\frac{2\left(2n+3\right)}{2n+3}-\frac{5}{2n+3}=2-\frac{5}{2n+3}\)
a) A nguyên khi \(\frac{5}{2n+3}\) nguyên <=> 5 chia hết cho 2n+3
<=>\(2n+3\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
<=>\(2n\in\left\{-8;-4;-2;2\right\}\)
<=>\(n\in\left\{-4;-2;-1;1\right\}\)
b) A lớn nhất khi \(2-\frac{5}{2n+3}\)lớn nhất <=>\(\frac{5}{2n+3}\) nhỏ nhất <=> 2n+3 lớn nhất < 0 mà n nguyên
<=> 2n+3=-1 <=> n=-2
\(maxA=2-\frac{5}{2n+3}=2-\frac{5}{2\left(-2\right)+3}=2-\frac{5}{-1}=2-\left(-5\right)=7\) tại n=-2
phần giá trị nhỏ nhất bạn làm nốt
B1:
A=1/3+1/3^2+1/3^3+...+1/3^100
B2:
a) Cho phân số A=n+3/n-5(n thuộc Z).Tìm A để nhận giá trị nguyên
b) Cho phân số B=1-2n/n+3(n thuộc Z).Tìm B để nhận giá trị nguyên
Trả lời nhanh giúp mình với!
B1:
A=1/3+1/3^2+1/3^3+...+1/3^100
3A = 1 + 1/3 + 1/3^2 + ... + 1/3^99
3A - A = 1 - 1/3^100 = 2A
A = (1 - 1/3^100)/2
B2:
a)
để A nguyên <=> n + 3 ⋮ n - 5
=> n - 5 + 8 ⋮ n - 5
=> 8 ⋮ n - 5
=> ...
b)
để B nguyên <=> 1 - 2n ⋮ n + 3
=> 4 - 2n - 3 ⋮ n + 3
=> 4 - 2(n + 3) ⋮ n + 3
=> 4 ⋮ n + 3
=> ...
Bài 1.
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\)
\(3A=3\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(3A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}\)
\(3A-A=2A\)
\(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{100}}\right)\)
\(=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{99}}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^{100}}\)
\(=1-\frac{1}{3^{100}}\)
\(2A=1-\frac{1}{3^{100}}\Leftrightarrow A=\frac{1-\frac{1}{3^{100}}}{2}\)
Bài 2.
a) \(A=\frac{n+3}{n-5}=\frac{n-5+8}{n-5}=1+\frac{8}{n-5}\)
Để A là nhận giá trị nguyên
=> 8 chia hết cho n - 5
=> n - 5 thuộc Ư(8) = { ±1 ; ±2 ; ±4 ; ±8 }
n-5 | 1 | -1 | 2 | -2 | 4 | -4 | 8 | -8 |
n | 6 | 4 | 7 | 3 | 9 | 1 | 13 | -3 |
Vậy ...
b) \(B=\frac{1-2n}{n+3}=\frac{-2n+1}{n+3}=\frac{-2\left(n+3\right)+7}{n+3}=-2+\frac{7}{n+3}\)
Để B nhận giá trị nguyên
=> 7 chia hết cho n + 3
=> n + 3 thuộc Ư(7) = { ±1 ; ±7 }
n+3 | 1 | -1 | 7 | -7 |
n | -2 | -4 | 4 | -10 |
Vậy ...
Cho phân số : A = \(\frac{2n+1}{n-2}\)
a) Tìm n thuộc Z để A có giá trị nguyên .
b) Tìm n thuộc Z để A có giá trị lớn nhất .
c) Tìm n thuộc Z để A có giá trị nhỏ nhất .
d) Tìm n thuộc Z để A có giá trị âm .
Giúp mình mấy bài này nha
bài 1 : Tìm n thuộc N để phân số 2n-1/3n+2 có giá trị là số nguyên dương
Bài 2: Tìm n thuộc N để phân số n+3/4n-1 có giá trị là số nguyên âm
Bài 3: Tìm n thuộc N để phân số 2n+5/3n+1 có giá trị là số tự nhiên