Cho x,y duong thoa man: x+y=3. Chung minh rang x2y <= 4
cho x,y,z la cac so nguyen duong va x+y+z la so le, cac so thuc a,b,c thoa man (a-b)/x=(b-c)/y=(a-c)/z. chung minh rang a=b=c
cho so nguyen to p va cac so duong x,y thoa man 4x^2-3xy-y^2-p(3x+2y)=2p^2 CHUNG MINH RANG 5x-1 la so chinh phuong
Có: \(4x^2-3xy-y^2-p\left(3x+2y\right)=2p^2\Leftrightarrow\left(4x+y\right)\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left[\left(3x+2y\right)+\left(x-y\right)\right]\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y\right)-p\left(3x+2y\right)+\left(x-y\right)^2-p^2=p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y-p\right)+\left(x-y-p\right)\left(x-y+p\right)=p^2\)\(\Leftrightarrow\left(x-y-p\right)\left(4x+y+p\right)=p^2=1.p^2\)
Do \(4x+y+p>x-y-p\)nên \(\hept{\begin{cases}x-y-p=1\left(1\right)\\4x+y+p=p^2\left(2\right)\end{cases}}\)(Do p là số nguyên tố)
Lấy (1) + (2), ta được: \(5x=p^2+1\Rightarrow5x-1=p^2\)(là số chính phương, đpcm)
1/cho cac so duong a,b,c,x,y,z thoa man ax=by=cz=10
chung minh rang [a+b+c][x+y+z]>=90
Áp dụng bất đẳng thức Bunhiacopxki, ta được : \(\left(a+b+c\right)\left(x+y+z\right)\ge\left(ax+by+cz\right)^2=\left(3ax\right)^2=30^2=90\)
\(\Rightarrow\left(a+b+c\right)\left(x+y+z\right)\ge90\)
Xin lỗi bạn nhé ^^
Tại vội quá nên mình nhìn lộn. Phải là 900 mới đúng.
Nhưng như vậy thì có thể đề bài chưa đúng.
cho 3 so nguyen x,y,z thoa man x+y+z=0 chung minh rang x^3+y^3+z^3= 3xyz
xét hiệu x3+y3+z3-3xyz
=(x+y)3+z3-3xy(x+y)-3xyz
=(x+y+z)3-3(x+y+z)(x+y)z-3xy(x+y+z)
=0 vì x+y+z=0
=>x3+y3+z3=3xyz
=>đpcm
Cho x; y nguyen duong thoa man 1003x + 2y = 2008
a) Chung to rang x \(⋮\) 2
b) Tim x; y
a) Ta có: 1003x + 2y = 2008
⇔ 1003x = 2008 - 2y
⇔ 1003x = 2(1004 - y)
Xét thấy vế phải ⋮ 2
Do đó 1003x ⋮ 2
Mà 1003 không chia hết cho 2
Nên để 1003x ⋮ 2 thì x ⋮ 2
b) Vì a,b là số tự nhiên nên 1003x và 2y ≥ 0
Xét x = 0 thì y = 1004
Xét x = 1 (không thỏa mãn vì x không chia hết cho 2)
Xét x = 2 thì y = 1
Xét x = 3 không thỏa mãn vì 1003x > 2008 mà 2y dương nên nghiệm cảu pt là x = 0; y = 1004 và x = 2; y = 1
Cho 3 so duong thoa man\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\) . Chung minh rang \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\)lon hon hoac bang\(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Từ giả thiết : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Rightarrow xy+yz+zx=xyz\)
Ta có : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)
Vì hai vế luôn dương nên ta bình phương hai vế được :
\(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\ge\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)
Xét \(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\)
\(=\left(x+y+z\right)+\left(xy+yz+zx\right)+2\left(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\right)\)
Xét \(\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)
\(=xyz+\left(x+y+z\right)+2\left(x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
Suy ra : \(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\ge\)
\(\ge x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) (*)
Mà theo bất đẳng thức Bunhiacopxki , ta có :
\(\sqrt{\left(x+yz\right)}.\sqrt{y+zx}\ge\sqrt{xy}+\sqrt{yz.zx}=\sqrt{xy}+z\sqrt{xy}\) (1)
\(\sqrt{y+zx}.\sqrt{z+xy}\ge\sqrt{yz}+x\sqrt{yz}\)(2)
\(\sqrt{z+xy}.\sqrt{x+yz}\ge\sqrt{xz}+y\sqrt{xz}\)(3)
Cộng (1) , (2) và (3) theo vế ta được (*) đúng
Vậy bđt ban đầu được chứng minh.
chung minh rang khong co gia tri nguyen nao cua x,y,z thoa man :x^3+y^3+x^3=x+y+z+2009
\(\Leftrightarrow\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2009\Leftrightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z+1\right)z\left(z+1\right)=2009\)
Ta thấy về trái chia hết cho 3, vế phải không chia hết cho 3 =>đpcm.
cho cac so x,y,z thoa man x/2013=y/2014=z/2015 chung minh rang 4(x-y)(y-z)=(z-x)^2
cho x;y la hai so huu ti thoa man x^3+y^3 = 2x^2y^ chung minh rang can 1-1/xy la mot so huu ti