Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Quang
Xem chi tiết
Trịnh Như Ngọc
Xem chi tiết
Kiệt Nguyễn
11 tháng 1 2021 lúc 19:06

Có: \(4x^2-3xy-y^2-p\left(3x+2y\right)=2p^2\Leftrightarrow\left(4x+y\right)\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left[\left(3x+2y\right)+\left(x-y\right)\right]\left(x-y\right)-p\left(3x+2y\right)=2p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y\right)-p\left(3x+2y\right)+\left(x-y\right)^2-p^2=p^2\)\(\Leftrightarrow\left(3x+2y\right)\left(x-y-p\right)+\left(x-y-p\right)\left(x-y+p\right)=p^2\)\(\Leftrightarrow\left(x-y-p\right)\left(4x+y+p\right)=p^2=1.p^2\)

Do \(4x+y+p>x-y-p\)nên \(\hept{\begin{cases}x-y-p=1\left(1\right)\\4x+y+p=p^2\left(2\right)\end{cases}}\)(Do p là số nguyên tố)

Lấy (1) + (2), ta được: \(5x=p^2+1\Rightarrow5x-1=p^2\)(là số chính phương, đpcm)

Khách vãng lai đã xóa
kagamine rin len
Xem chi tiết
Hoàng Lê Bảo Ngọc
8 tháng 7 2016 lúc 18:56

Áp dụng bất đẳng thức Bunhiacopxki, ta được : \(\left(a+b+c\right)\left(x+y+z\right)\ge\left(ax+by+cz\right)^2=\left(3ax\right)^2=30^2=90\)

\(\Rightarrow\left(a+b+c\right)\left(x+y+z\right)\ge90\)

Hoàng Lê Bảo Ngọc
8 tháng 7 2016 lúc 20:25

Xin lỗi bạn nhé ^^

Tại vội quá nên mình nhìn lộn. Phải là 900 mới đúng.

Nhưng như vậy thì có thể đề bài chưa đúng.

nguyen thuy ail linh
Xem chi tiết
✓ ℍɠŞ_ŦƦùM $₦G ✓
13 tháng 7 2016 lúc 22:03

xét hiệu x3+y3+z3-3xyz

=(x+y)3+z3-3xy(x+y)-3xyz

=(x+y+z)3-3(x+y+z)(x+y)z-3xy(x+y+z)

=0       vì x+y+z=0

=>x3+y3+z3=3xyz

=>đpcm

Vũ Thị Thuỳ Lâm
Xem chi tiết
Kakarot Songoku
2 tháng 4 2020 lúc 19:38

a) Ta có: 1003x + 2y = 2008

⇔ 1003x = 2008 - 2y

⇔ 1003x = 2(1004 - y)

Xét thấy vế phải ⋮ 2

Do đó 1003x ⋮ 2

Mà 1003 không chia hết cho 2

Nên để 1003x ⋮ 2 thì x ⋮ 2

b) Vì a,b là số tự nhiên nên 1003x và 2y ≥ 0

Xét x = 0 thì y = 1004

Xét x = 1 (không thỏa mãn vì x không chia hết cho 2)

Xét x = 2 thì y = 1

Xét x = 3 không thỏa mãn vì 1003x > 2008 mà 2y dương nên nghiệm cảu pt là x = 0; y = 1004 và x = 2; y = 1

Khách vãng lai đã xóa
Quỳnh Hương
Xem chi tiết
Hoàng Lê Bảo Ngọc
19 tháng 9 2016 lúc 11:57

Từ giả thiết : \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Rightarrow xy+yz+zx=xyz\)

Ta có : \(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\ge\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\)

Vì hai vế luôn dương nên ta bình phương hai vế được : 

\(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\ge\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)

Xét \(\left(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}\right)^2\)

\(=\left(x+y+z\right)+\left(xy+yz+zx\right)+2\left(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\right)\)

Xét \(\left(\sqrt{xyz}+\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\)

\(=xyz+\left(x+y+z\right)+2\left(x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)

Suy ra : \(\sqrt{x+yz}.\sqrt{y+zx}+\sqrt{y+zx}.\sqrt{z+xy}+\sqrt{z+xy}.\sqrt{x+yz}\ge\)

\(\ge x\sqrt{yz}+y\sqrt{xz}+z\sqrt{xy}+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\) (*)

Mà theo bất đẳng thức Bunhiacopxki , ta có : 

\(\sqrt{\left(x+yz\right)}.\sqrt{y+zx}\ge\sqrt{xy}+\sqrt{yz.zx}=\sqrt{xy}+z\sqrt{xy}\) (1)

\(\sqrt{y+zx}.\sqrt{z+xy}\ge\sqrt{yz}+x\sqrt{yz}\)(2)

\(\sqrt{z+xy}.\sqrt{x+yz}\ge\sqrt{xz}+y\sqrt{xz}\)(3)

Cộng (1) , (2) và (3) theo vế ta được (*) đúng

Vậy bđt ban đầu được chứng minh.

Bùi Thúy Oanh
19 tháng 9 2016 lúc 20:57

chịu thua

nguyen cao tai minh
Xem chi tiết
Vô Danh
4 tháng 5 2016 lúc 12:05

\(\Leftrightarrow\left(x^3-x\right)+\left(y^3-y\right)+\left(z^3-z\right)=2009\Leftrightarrow\left(x-1\right)x\left(x+1\right)+\left(y-1\right)y\left(y+1\right)+\left(z+1\right)z\left(z+1\right)=2009\)

Ta thấy về trái chia hết cho 3, vế phải không chia hết cho 3 =>đpcm.

Nguyễn Minh Quang
Xem chi tiết
Đội Bom Vua
Xem chi tiết