\(\frac{2008+2009^{2010}}{2010^{2011}-2012}\)
\(B=\frac{\frac{2008}{2011}+\frac{2009}{2010}+\frac{2010}{2009}+\frac{2011}{2008}+\frac{2012}{503}}{\frac{1}{2008}+\frac{1}{2009}+\frac{1}{2010}+\frac{1}{2011}}\)
So sánh : \(A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}vàB=\frac{2008+2009+2010}{2009+2010+2011}\)
giúp mình câu này với:
so sánh : A=2008/2009 + 2009/2010 + 2010/2011+2011/2012 và B=4
Ta có 2008/2009 < 1; 2009/2010 < 1; 2010/2011 < 1; 2011/2012 < 1
Nên : 2008/2009 + 2009/2010 + 2010/2011 + 2011/2012 < 1 + 1 + 1 + 1
Ta có 2008/2009 < 1; 2009/2010 < 1; 2010/2011 < 1; 2011/2012 < 1
Nên : 2008/2009 + 2009/2010 + 2010/2011 + 2011/2012 < 1 + 1 + 1 + 1
Hay A < 4
A < B
So sánh : A=\(\frac{2008}{2009}\)+\(\frac{2009}{2010}\)+\(\frac{2010}{2011}\)và B=\(\frac{2008+2009+2010}{2009+2010+2011}\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}+\frac{2009}{2009+2010+2011}+\frac{2010}{2009+2010+2011}\)
\(< \frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}=A\)
\(B=\frac{2008+2009+2010}{2009+2010+2011}\)
\(=\frac{2008}{2009+2010+2011}=\frac{2009}{2009+2010+2011}=\frac{2010}{2009+2010+2011}\)
\(< A=\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}\)
Cho A = \(\frac{2000}{2001}+\frac{2001}{2002}+\frac{2002}{2003}+\frac{2003}{2004}+\frac{2005}{2006}+\frac{2006}{2007}+\frac{2007}{2008}+\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)
Hãy so sánh tổng các phân số trong A và so sánh với 15.
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
Cho M=3^2012-3^2011+3^2010-3^2009+3^2008 \(M=3^{2012}-2^{2011}+3^{2010}-3^{2009}+3^{2008}\)
Chứng minh rằng M chia hết cho 10
So sánh A và B biết
A=\(\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
B=\(\frac{2009+2010+2011}{2010+2011+2012}\)
A=2.998508205
B=0.999502735
suy ra A>B
Bài giải
Theo bài ra :
\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
Ta có :
\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)
\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }A>B\)
Bài giải
Theo bài ra :
\(A=\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}\)
\(B=\frac{2009+2010+2011}{2010+2011+2012}=\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
Ta có :
\(\frac{2009}{2010}>\frac{2009}{2010+2011+2012}\)
\(\frac{2010}{2011}>\frac{2010}{2010+2011+2012}\)
\(\frac{2011}{2012}>\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2012}>\frac{2009}{2010+2011+2012}+\frac{2010}{2010+2011+2012}+\frac{2011}{2010+2011+2012}\)
\(\Rightarrow\text{ }A>B\)
x-2012/2008-x-2012/2009=x-2012/2010-x-2012/2011.tìm x
\(A=\dfrac{5^{2011}-5^{2010}+5^{2009}-5^{2008}+....+5-1}{5^{2013}-5^{2012}+5^{2011}-5^{2010}+....+5-1}\) \(B=\dfrac{5^{2009}-5^{2008}+5^{2007}-5^{2006}+....+5-1}{5^{2011}-5^{2010}+5^{2009}-5^{2008}+....+5-1}\)
So sánh A và B