x=y/8=z/27 và 3x - 2y + 7z = 5
a) 2x=3y;5y=7z và x-y-z=-27
b)x/4=y/5=z/6 mà x^2-2y^2+z^2=18
c) x:y:z=3:8:5 và 3x+y-2z=14
d) 2x=3y;5y-7z và 3x+5y-7z=30
e)x-3/-4=y+4/7=z-5/3 và 3x-2y+7z=-48
f)-3x=4y;6y=7z và x-2y+3z=-48
g) x/-3=y/7;y/-2 =z/5 và -2x-4y +5z=146
Tìm x,y,z
a)Ta có: \(2x=3y;5y=7z\)và \(x-y-z=-27\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{5}\)và\(x-y-z=-27\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)và \(x-y-z=-27\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=\frac{x-y-z}{21-14-10}=\frac{-27}{-3}=9\)
Ta có:\(\frac{x}{21}=9\Rightarrow x=9.21=189\)
\(\frac{y}{14}=9\Rightarrow y=9.14=126\)
\(\frac{z}{10}=9\Rightarrow z=9.10=90\)
Vậy:\(x=189;y=126\)và\(z=90\)
b) \(\frac{x}{4}=\frac{y}{5}=\frac{z}{6}\)và\(x^2-2y^2+z^2=18\)
\(\Rightarrow\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}\)và\(x^2-2y^2+z^2=18\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{16}=\frac{2y^2}{50}=\frac{z^2}{36}=\frac{x^2-2y^2+z^2}{16-50+36}=\frac{18}{2}=9\)
Ta có:\(\frac{x^2}{16}=9\Rightarrow x^2=144\Rightarrow\orbr{\begin{cases}x=12\\x=-12\end{cases}}\)
\(\frac{2y^2}{50}=9\Rightarrow2y^2=450\Rightarrow y^2=225\Rightarrow\orbr{\begin{cases}y=15\\y=-15\end{cases}}\)
\(\frac{z^2}{36}=9\Rightarrow z^2=324\Rightarrow\orbr{\begin{cases}z=18\\z=-18\end{cases}}\)
Vậy: \(x=12;y=15;z=18\)hoặc \(x=-12;y=-15;z=-18\)
c) \(x:y:z=3:8:5\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)và\(3x+y-2z=14\)
\(\Rightarrow\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}\)và \(3x+y-2z=14\)
Áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{3x}{9}=\frac{y}{8}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
Ta có: \(\frac{3x}{9}=2\Rightarrow3x=18\Rightarrow x=6\)
\(\frac{y}{8}=2\Rightarrow y=16\)
\(\frac{2z}{10}=2\Rightarrow2z=20\Rightarrow z=10\)
Vậy:\(x=6;y=16;z=10\)
Tìm x , y , z biết :
a) 3x = 2y ; 7y = 5z và x - y + z = 32
b) 3x = 2y ; 5y = 7z và 3x + 5y - 7z = 42
c) 5x = 2y ; 2x = 3z và x . y = 90
d)2x = 3y = 5z và x + y - z = 95
e) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)và xyz = 810
\(3x=2y\Rightarrow\frac{x}{2}=\frac{y}{3}\)
\(7y=5z\Rightarrow\frac{y}{5}=\frac{z}{7}\)
\(\hept{\begin{cases}\frac{x}{2}=\frac{x}{3}\\\frac{y}{5}=\frac{x}{7}\end{cases}\Rightarrow}\frac{x}{2}=\frac{5y}{15};\frac{3y}{15}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng tính chát dãy tỉ số = nhau ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
\(\Rightarrow\frac{x}{10}=2\Rightarrow x=20\)
\(\frac{y}{15}=2\Rightarrow y=30\)
\(\frac{z}{21}=3\Rightarrow z=63\)
b, Tự làm
c, \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)
\(2x=3z\Leftrightarrow\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{2}=\frac{y}{5};\frac{x}{3}=\frac{z}{2}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{x}{6}=\frac{z}{10}\)
\(\Leftrightarrow\frac{x}{6}=\frac{y}{15}=\frac{z}{10}\)
Đặt \(\frac{x}{6}=\frac{y}{15}=\frac{z}{10}=k(k\inℤ)\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\)
\(\Leftrightarrow x\cdot y=6k\cdot15k=90\)
\(\Leftrightarrow90:k^2=90\Leftrightarrow k^2=1\Leftrightarrow k=\pm1\)
\(\Leftrightarrow\hept{\begin{cases}x=6k\\y=15k\\z=10k\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=15\\z=10\end{cases}}\)hay \(\hept{\begin{cases}x=-6\\y=-15\\z=-10\end{cases}}\)
Vậy \((x,y)\in(6,15);(-6,-15)\)
d, \(2x=3y=5z\Leftrightarrow\frac{2x}{30}=\frac{3y}{30}=\frac{5z}{30}\)
\(\Leftrightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)
Vậy : \(\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\Leftrightarrow\hept{\begin{cases}x=75\\y=50\\z=30\end{cases}}\)
Tìm x,y,z
a) - 2 : x= -x : 8
b) x/2 = y/5 và x+y= - 21
c)7x=3y ;12y=7z Và 3x + 2y+z=14
a) Ta có :\(\frac{x}{2}=\frac{y}{5}\Rightarrow x=2k\) ; \(y=5k\)
\(x+y=-21\Rightarrow2k+5k=-21\)
\(\Leftrightarrow7k=-21\Rightarrow k=-3\)
Với \(k=-3\Rightarrow\hept{\begin{cases}\frac{x}{2}=-3\\\frac{y}{5}=-3\end{cases}\Rightarrow}\hept{\begin{cases}x--3.2=-6\\y=-3.5=-15\end{cases}}\)
Vậy ........
c) \(7x=3y\Rightarrow\frac{x}{3}=\frac{y}{7}\left(1\right)\)
\(12y=7z\Rightarrow\frac{y}{7}=\frac{z}{12}\left(2\right)\)
Từ (1) và (2) \(\Rightarrow\frac{x}{3}=\frac{y}{7}=\frac{z}{12}=\frac{3x}{9}=\frac{2y}{14}=\frac{z}{12}=\frac{3x+2y+z}{9+14+12}=\frac{14}{35}=\frac{2}{5}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{3}=\frac{2}{5}\\\frac{y}{7}=\frac{2}{5}\\\frac{z}{12}=\frac{2}{5}\end{cases}\Rightarrow}\hept{\begin{cases}x=\frac{6}{5}\\y=\frac{14}{5}\\z=\frac{24}{5}\end{cases}}\)
1
a, x/20 = y/9 = z/6 và x - 20/y + 4 =13
b,x/3 = y/4 : y/5 = 2/7 và x - y - z = 46
c,x/2 = 2y/5 = 42/7 và 3x . 5y . 7z = 123
d,x/2 = 2y/3 =32/4 và x . y .z -108
2
a, a/4 = b/6 ; b/5 =c/8 và 5k -3b =-536
b, a/7 = b/6 ;b/5= c/8 và a -2b + c = 46
c, 5 . a =8.b = 3.c và a-2b =c = 24
d, a + 3/5 = b -2/3 = c - 1/7 và a+b+c =24
e,a/2 = b/3 = c/4 và a^2 + 3 . b^2 - 2 . c^2 = -16
3x=2y=7z và x- z= 16
tìm x,y,z
\(3x=2y=7z\)
⇒\(\dfrac{x}{14}=\dfrac{y}{21}=\dfrac{z}{6}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{14}=\dfrac{z}{6}=\dfrac{x-z}{14-6}=\dfrac{16}{8}=2\)
⇒\(\left\{{}\begin{matrix}x=14.2=28\\y=21.2=42\\z=6.2=12\end{matrix}\right.\)
Bài 1. Tìm các số x, y, z, biết rằng 1. x/20 = y/9 = z/6 và x − 2y + 4z = 13; 2. x 3 = y 4 , y 5 = z 7 và 2x + 3y − z = 186. 3. x 2 = 2y 5 = 4z 7 và 3x + 5y + 7z = 123; 4. x 2 = 2y 3 = 3z 4 và xyz = −108.
Cho x,y,z:
3x=2y ; 5y=7z và 3x+5y-7z=60
suy ra:x/2=y/3 , y/7 = z/5
suy ra x/14 = y/21 = z/15 = 3x/42 = 5y/105 = 7z/105
áp dụng tính chất của dãy tỉ số bằng nhau ta có :
3x/42= 5y/105 = 7z/105= 3x +5y -7z/42+105-105 = 10/7
suy ra : x= 20
y = 30
z = 150/7
Néu đúng thì k cho mk nha
ta có: 3x=2y => \(\frac{x}{2}=\frac{y}{3}\)
5y=7z =>\(\frac{y}{7}=\frac{z}{5}\)
=>\(\frac{x}{14}=\frac{y}{21}=\frac{z}{15}\)
=>\(\frac{3x}{42}=\frac{5y}{105}=\frac{7z}{245}=\)\(\frac{3x+5y-7z}{42+105-105}=\frac{60}{42}=\frac{10}{7}\)
\(\frac{x}{14}=\frac{10}{7}\)=> x =20
\(\frac{y}{21}=\frac{10}{7}\)=> y = 30
\(\frac{z}{15}=\frac{10}{7}\) => z=\(\frac{150}{7}\)
Đáp số:20;30;\(\frac{150}{7}\)
Tìm x,y,z biết
a/\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(^{x^2+y^2+z^2=116}\)
b/ \(2x=3y;5y=7z\)và\(3x+5z-7y=30\)
c/\(3x=2y;5y=7z\)và \(3x+5y-7z=60\)
d/ \(\frac{x}{y}=\frac{8}{5};\frac{y}{z}=\frac{2}{7}\)và \(x+y+z=61\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=k\)
suy ra: \(x=2k;\)\(y=3k;\)\(z=4k\)
Ta có: \(x^2+y^2+z^2=116\)
<=> \(\left(2k\right)^2+\left(3k\right)^2+\left(4k\right)^2=116\)
<=> \(29k^2=116\)
<=> \(k^2=4\)
<=> \(k=\pm2\)
tự làm nốt
a) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)và \(x^2+y^2+z^2=116\)
\(\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)và\(x^2+y^2+z^2=116\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
Ta có:\(\frac{x^2}{4}=4\Rightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4\\x=-4\end{cases}}\)
\(\frac{y^2}{9}=4\Rightarrow y^2=36\Rightarrow\orbr{\begin{cases}y=6\\y=-6\end{cases}}\)
\(\frac{z^2}{16}=4\Rightarrow z^2=64\Rightarrow\orbr{\begin{cases}z=8\\z=-8\end{cases}}\)
Vậy:\(x=4;y=6;z=8\)hoặc\(x=-4;y=-6;z=-8\)
a)\(\frac{x}{2}=\frac{y}{3}\) \(\frac{y}{6}=\frac{z}{5}\)và x-2y+z=27
b) 5x=9y và 2x-3y=30
c) x:y:2=3:4:5 và \(2x^2\)+\(2y^2-3z^2=-100\)
d)2x=3y;5y=7z và 3x-7y+5z =-30
e)3x=7y và xy=84
tìm x,y,z
a) Ta có : \(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\) (1)
\(\frac{x}{6}=\frac{y}{5}\Rightarrow\frac{x}{12}=\frac{y}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{10}=\frac{x}{8}-\frac{2y}{24}+\frac{z}{10}=\frac{x-2y+z}{8-24+10}=\frac{27}{-6}=\frac{9}{-2}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{x}{8}=\frac{9}{-2}\Rightarrow x=-36\\\frac{y}{12}=\frac{9}{-2}\Rightarrow y=-54\\\frac{z}{10}=\frac{9}{-2}\Rightarrow z=-45\end{cases}}\)
Vậy ....
b) Ta có : \(5x=9y\Rightarrow x=\frac{9y}{5}\)
Thay \(x=\frac{9y}{5}\)vào biểu thức \(2x-3y=30\);ta được :
\(\frac{2.9y}{5}-3y=30\Rightarrow18y-15y=150\Rightarrow3y=150\Rightarrow y=50\)
Với \(y=50\Rightarrow x=\frac{9.50}{5}=90\)
Vậy .....
c) Ta có : \(x\div y\div z=3\div4\div5\)
\(\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{2x^2}{18}=\frac{2y^2}{32}=\frac{3z^2}{75}=\frac{2x^2-2y^2-3z^2}{18+32-75}=\frac{-100}{-25}=4\)
Do đó : \(\hept{\begin{cases}\frac{x}{3}=4\Rightarrow x=12\\\frac{y}{4}=4\Rightarrow y=16\\\frac{z}{5}=4\Rightarrow z=20\end{cases}}\)
Vậy ...
d) Ta có : \(2x=3y\Rightarrow x=\frac{3y}{2}\left(1\right)\)
\(5y=7z\Rightarrow z=\frac{5y}{7}\left(2\right)\)
Thay (1) và (2) vào biểu thức \(3x-7y+5z=-30\);ta được :
\(\frac{3.3y}{2}-7y+\frac{5.5y}{7}=-30\)
\(\Leftrightarrow63y-98y+50y=-420\)
\(\Leftrightarrow15y=-420\Rightarrow y=-28\)
Với \(y=-28\Rightarrow x=\frac{3.-28}{2}=-42;z=\frac{5.-28}{7}=-20\)
e) Ta có : \(3x=7y\Rightarrow\frac{x}{7}=\frac{y}{3}\)
\(\Rightarrow x.y=84\Rightarrow3k.7k=84\Rightarrow21k^2=84\Rightarrow k^2=4\Rightarrow\orbr{\begin{cases}k=2\\k=-2\end{cases}}\)
Với \(k=2\Rightarrow\frac{x}{7}=2\Rightarrow x=14;\frac{y}{3}=2\Rightarrow y=6\)
Với \(k=-2\Rightarrow\frac{x}{7}=-2\Rightarrow x=-14;\frac{y}{3}=-2\Rightarrow y=-6\)
Vậy ...
a) ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{4}=\frac{y}{6}\)
\(\Rightarrow\frac{x}{4}=\frac{y}{6}=\frac{z}{5}\)
\(\frac{y}{6}=\frac{2y}{12}\)
\(\Rightarrow\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}\) (1)
áp dụng tính chất của dãy tỉ số bằng nhau,ta có:
\(\frac{x}{4}=\frac{2y}{12}=\frac{z}{5}=\frac{x-2y+z}{4-12+5}=\frac{27}{-3}=-9\) (2)
từ (1) và (2) suy ra:
\(\frac{x}{4}=-9\Rightarrow x=-9.4=-36\)
..................................y;z bn tự tính ha!^^
b) ta có:
\(5x=9y\Rightarrow\frac{x}{9}=\frac{y}{5}\)
\(\frac{x}{9}=\frac{2x}{18};\frac{y}{5}=\frac{3y}{15}\)
thui làm đến bước này thì bn tự làm nốt nha! làm câu d cũng tương tự lun! (câu c mk ko pik làm đâu!^^)
e)
ta có:
3x=7y \(\Rightarrow\frac{x}{7}=\frac{y}{3}\)
đặt \(\frac{x}{7}=\frac{y}{3}=k\left(k\in Z\right)\Rightarrow\hept{\begin{cases}x=7k\\y=3k\end{cases}}\)
vì xy = 84 nên : 7k.3k = \(84\)
\(\Rightarrow21k^2=84\)
\(\Rightarrow k^2=4=2^2=\left(-2\right)^2\)
với k = 2 thì x =........... ; y=................
với k=-2 thì x=........ ; y=....................
ự làm nốt ha!the end!^^