Cho tam giác ABC vuông ở A AB=12cm AC=16cm. Tia phân giác của góc A cắt BC tại D
1 tính \(\frac{DB}{DC}\)
2, đường thẳng qua D // vs AB cắt AC ở E Chứng minh tam giác EDC đồng dạng vs tgiac ABC
3, tính DE và tam giác BDC
Cho tam giác ABC vuông tại A (AB<AC). Vẽ đường cao AH (H thuộc BC). Gọi D là điểm đối xứng với B qua H
a) chứng minh tam giác ABC đồng dạng vs tam giác HBA
b) từ C kẻ đường thẳng vuông góc vs tia AD, cắt AD tại E. Chứng minh AH.CD=CE.AD
c) chứng minh tam giác ABC đồng dạng vs tam giác EDC và tính diện tích tam giác EDC bt AB=6cm, AC=8cm
d) bt AH cắt CE tại E, tia FD cắt AC tại K. Chứng minh KD là tia phân giác góc HKE
Cho tgiac ABC vuông tại A có AB=12cm,AC=16cm, có phân giác BD(D thuộc AC) a) TÍnh DA,DC b) Kẻ đường cao AH của tam giác ABC. CMinh tgiac AHB đồng dạng vs tam giác ABC c) C/minh:AH.AH=HB.HC d) Kẻ DK vuông góc BC tại K. Tính HK
Cho tam giác ABC vuông tại A, tia phân giác góc A cắt cạnh BC tại D, AD = 9cm,BC = 15cm
a)Tính \(\frac{DB}{DC}\)
b) Kẻ đường thẳng qua D,vuông góc với AC, cắt AC tại E.Chứng minh tam giác EDC ~ tam giác ABC.Tìm tỉ số đồng dạng
c) Tính diện tích của tam giác EDC
Cho tam giác ABC vuông tại A có AB =9cm AC=12cm tia phân giác góc A cắt BC tại D từ D kẻ DE vuông góc Ac E thuộc AC a, tính tỉ số BD phần DC độ dài BD và CD b,chứng minh tam giác ABC đồng dạng tam giác EDC
a: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AD là phân giác
=>BD/CD=AB/AC=3/4
=>4DB=3CD
mà DB+DC=15
nên DB=45/7cm; DC=60/7cm
b: Xet ΔABC vuông tại A và ΔEDC vuông tại E có
góc C chung
=>ΔABC đồng dạng với ΔEDC
giúp mik vs
Cho tam giác ABC có AD là đường phân giác.
a) CHo AC = 16cm , DB = 6cm , DC = 8cm . Tính độ dài đoạn thẳng AB
b) Qua D kẻ đường thẳng song song với AB cắt AC tại E. Chứng Minh tam giác ABC đồng đạn tam giác EDC
c) Gọi I là trung điểm của AB, AD cắt EI tại P, BE cắt ID tại Q.
Chứng minh: PE/PI = QD/QI
a: AD là phân giác
=>DB/AB=DC/AC
=>6/AB=8/16=1/2
=>AB=12cm
b: Xét ΔCED và ΔCAB có
góc CED=góc CAB
góc C chung
=>ΔCED đồng dạng với ΔCAB
cho tam giác ABC vuông tại A, AB=12cm; AC=16cm. Vẽ đường cao AH (H thuộc BC). Đường phân giác BD của góc ABC cắt AH tại E ( D thuộc AC)
a) Chứng minh: AB^2 = BH.BC
b) Tính AD
C) Chứng minh: DB/EB = DC/DA
a: ΔACB vuông tại A co AH vuông góc BC
nên AB^2=BH*BC
b: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=16/8=2
=>AD=6cm
Cho tam giác ABC vuông tại A, AB = 9cm, AC = 12cm. Tia phân giác của góc BAC cắt BC tại D. Từ D kẻ đường thẳng vuông góc với AC, đường thẳng này cắt AC tại E. a) Chứng minh tam giác CED đồng dạng tam giác CAB. b) Tính CD:BE=?.c) Sabd=?
Bạn có bt vẽ hình và viết giả thiết ,kết luận ko
Gửi cho mình với
Cho tam giác ABC, I là giao điểm các đường phân giác trong của tam giác đó, từ I kẻ IM vuông góc vs AB, IN vuông góc vs BC, IK vuông góc vs AC. Qua A vẽ D1 // MN cắt NK ở E. Qua A vẽ D2// NK cắt MN tại D. Đường thẳng ED cắt AC ở P, cắt AB ở Q
Chứng minh PQ là đường trung bình của t/giác ABC
Cho tam giác ABC có AB=3cm , AC=4cm, BC=5cm.Đường phân giác góc A cắt BC tại D.Qua D vẽ đường vuông góc với BC cắt AC tại E và BA tại K.
a) CM tam giác ABC vuông
b) tính DB, DC
c) CM tam giác EDC đồng dạng tam giác BDK
d)chứng minh DE=DB
a: Xét ΔABC có \(BC^2=AB^2+AC^2\)
nên ΔABC vuông tại A
b: Xét ΔACB có AD là phân giác
nên BD/AB=CD/AC
=>BD/3=CD/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{10}{7}\)
Do đó:BD=30/7cm; CD=40/7cm