7/1.3+7/3.5+7/5.7+.....+7/99.101 ai làm đầy đủ mình tick cho
\(B=\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)
các bạn nhớ trình bày bài giải đầy đủ nhé mình tích cho.
B : 7/2 =2/1.3+2/3.5+...+2/99.101
B:7/2=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
B:7/2=1-1/101=100/101
B=100/101*7/2=700/202=350/101
B=7/2(2/1.3+2/3.5+ ...+2/99.101)
B=7/2(1-1/3+1/3-1/5+...+1/99-1/101)
B=7/2(1-1/101)=7/2.100/101=350/101
k nha bạn
B=1/1-1/3+1/3-1/5+1/5-1/7+....+1/99-1/101
B=1-1/101=100/101
vậy B=100/101
Tính tổng:
\(\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)
Mình chỉ cần mấy bạn giải giúp khúc nhân cái tổng đó với 2, làm chi tiết khúc đó lên nhé! Nhưng phải đúng. Tick cho ( 3 tick)
7/1.3 + 7/3.5 + 7/5.7 + ... + 7/99.101
= 7.(1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101)
= 7/2 . 2 . (1/1.3 + 1/3.5 + 1/5.7 + ... + 1/99.101)
= 7/2 . (2/1.3 + 2/3.5 + 2/5.7 + ... + 2/99.101)
= 7/2 . (1 - 1/3 + 1/3 - 1/5 + ... + 1/99 - 1/101)
= 7/2 . (1 - 1/101)
= 7/2 . 100/101
= 350/101
\(\frac{7}{1.3}+\frac{7}{3.5}+...+\frac{7}{99.101}\)
\(=7\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)
\(=\)\(\frac{7}{2}.2.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}\right)\)
\(=\)\(\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
=\(\frac{7}{2}x\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+.....+\frac{1}{99}-\frac{1}{100}\right)\)
=\(\frac{7}{2}x\left(\frac{1}{3}-\frac{1}{100}\right)\)
=\(\frac{7}{2}\)x\(\frac{97}{300}\)
=\(\frac{679}{600}\)
a) 1/1.3+1/3.5+1/5.7+.....+1/99.101
b) 7/1.3+7/3.5+7/5.7+.....+7/99.101
a) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}-...-\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
b) \(\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)
\(=7.\left(\frac{1}{1.3}+\frac{1}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\right)\)
\(=7.\frac{1}{7}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{7}{7}\left(1-\frac{1}{101}\right)\)
\(=\frac{100}{101}\)
Tính :
A = 1.2+2.3+3.4+...+99.100
B = 1.3+2.4+3.5+...+99.101
C = 1.3+3.5+5.7+...+97.99+99.101
D = 1.4+2.5+3.6+...+99.102
E = 12+22+32+...+992+1002
F = 1.99+2.98+3.97+...+98.2+99.1
Mình cần gấp lắm ! Ai làm được cho mình trước trình bày đầy đủ mình kick cho
Tính nhanh \(\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+...+\frac{7}{99.101}\)
\(\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+....+\frac{7}{99.101}\)
\(=\frac{7}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+....+\frac{2}{99.101}\right)\)
\(=\frac{7}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{7}{2}\left(1-\frac{1}{101}\right)=\frac{7}{2}.\frac{100}{101}=\frac{350}{101}\)
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{7}{5.7}+...+\frac{1}{99.101}\)
=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=100/101
k cho mình nha
\(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{99.101}\)
\(=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+....+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
TA CÓ \(\frac{1}{1.3}+\frac{1}{3.5}+.....+\frac{1}{99.101}\)
\(=\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.....+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{1}-\frac{1}{101}\)
\(=\frac{100}{101}\)
S=1.3+3.5+5.7+...+99.101; Tính S (trình bày giúp mình nhé! Ai nhanh nhất thì mình tick!)
TÍNH NHANH:
A=\(\frac{7}{1.3}+\frac{7}{3.5}+\frac{7}{5.7}+....+\frac{7}{99.100}\)
ai làm được mình tích cho
\(A=\frac{7}{1.3}+\frac{7}{3.5}+.............+\frac{7}{99.101}\)
\(=\frac{7}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+........+\frac{2}{99.101}\right)\)
\(=\frac{7}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+.......+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{7}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{7}{2}.\frac{100}{101}\)
\(=\frac{350}{101}\)
tính tổng sau
M=2/1.3+2/3.5+2/5.7+...+2/99.101
A=7/10.11+7/11.12+7/12+13+...7/69.70
B=1/25.27+1/27.29+1/29.31+...+1/73.75
Tính :
a) \(M=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(=1-\frac{1}{101}\)
\(=\frac{100}{101}\)
b) \(A=\frac{7}{10.11}+\frac{7}{11.12}+\frac{7}{12.13}+...+\frac{7}{69.70}\)
\(=7.\left(\frac{1}{10.11}+\frac{1}{11.12}+\frac{1}{12.13}+...+\frac{1}{69.70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}+...+\frac{1}{69}-\frac{1}{70}\right)\)
\(=7.\left(\frac{1}{10}-\frac{1}{70}\right)\)
\(=7.\frac{3}{35}\)
\(=\frac{3}{5}\)
c) \(B=\frac{1}{25.27}+\frac{1}{27.29}+\frac{1}{29.31}+...+\frac{1}{73.75}\)
\(=\frac{1}{2}.\left(\frac{2}{25.27}+\frac{2}{27.29}+\frac{2}{29.31}+...+\frac{2}{73.75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{27}+\frac{1}{27}-\frac{1}{29}+\frac{1}{29}-\frac{1}{31}+...+\frac{1}{73}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{25}-\frac{1}{75}\right)\)
\(=\frac{1}{2}.\frac{2}{75}\)
\(=\frac{1}{75}\)
M=2/1.3+2/3.5+2/5.7+...+2/99.101
=1-1/3+1/3-1/5+1/5-1/7+...+1/99-1/101
=1-1/101
=101/101-1/101
M = 99/101
A=7/10.11+7/11.12+7/12+13+7/69/70 ( sai đề )
B= 1/25.27+1/27.29+1/29.31+...+1/73.75
=1/2.(2/25.27+2/27.29+2/29.31+...+2/73.75
=1/2.(1/25-1/27+1/27-1/29+1/29-1/31+...+1/73-1/75
=1/2.(1/25-1/75)
=1/2.75/100
=3/8