Tính tổng sau:1\31*3\32*5\33....*59\60
cho tổng A = 1/31 + 1/32 + 1/33 + ..... + 1/59 + 1/60 . hãy so sánh A với 4/5
Cho S= 1/31 + 1/32 + 1/33 +....+ 1/59 + 1/60. CMR 3/5<S<4/5
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5
CMR: 31/2*32/2*33/2*...*60/2=1*3*5*...*59
tính:1/31+1/32+1/33+...+1/59+1/60
Cho S=1/31+1/32+1/33+...+1/59+1/60 Chứng minh 3/5<S<4/5
Cho S=1/31+1/32+1/33+.........+1/59+1/60. C/m 3/5<S<4/5
cho S = 1/31+1/32+1/33+...+1/59+1/60. cmr 3/4<S<4/5
chứng minh 31/2 X 32/2 X 33/2 ...60/2 = 1 X 3 X 5 ...X 59
cho s=1/31+1/32+1/33+...+1/59+1/60
chung minh rang : 3/5<s<4/5
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) > 1/40 x 10 = 1/4 (gồm 10 số hạng)
Tương tự : (1/41 + 1/42 + ...+ 1/50) > 1/5 ; (1/51 + 1/52+...+1/59+1/60) > 1/6
S > 1/4 + 1/5 + 1/6.
Trong khi đó (1/4 + 1/5 + 1/6) > 3/5
=>S > 3/5 (1)
S = (1/31+1/32+1/33+...+1/40) + (1/41 + 1/42 + ...+ 1/50) + (1/51 + 1/52+...+1/59+1/60)
Mà : (1/31+1/32+1/33+...+1/40) < 1/31 x 10 = 10/30 = 1/3 (gồm 10 số hạng)
=> S < 4/5 (2)
Từ (1) và (2) => 3/5 <S<4/5