Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tay súng cừ khôi
Xem chi tiết
What Coast
27 tháng 6 2016 lúc 10:38

Ta có : 1/n-1/n+1=n+1/n.(n+1)-n/n.(n+1)=1/n.(n+1)

1/n.1/n+1=1/n(n+1)

=> hiệu của chúng = tích của chúng 

Tay súng cừ khôi
27 tháng 6 2016 lúc 10:31

cứu mih voi

Võ Đông Anh Tuấn
27 tháng 6 2016 lúc 10:34

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)

\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n.\left(n+1\right)}\)

Vậy : \(\frac{1}{n}\)và \(\frac{1}{n+1}\)có hiệu và tích bằng nhau

Superman
Xem chi tiết
Lê Thanh Trúc
16 tháng 2 2017 lúc 21:32

\(\frac{1}{n}\)\(\frac{1}{n+1}\)\(\frac{n+1}{n\left(n+1\right)}\)\(\frac{n}{n\left(n-1\right)}\)=\(\frac{n+1-n}{n\left(n+1\right)}\)\(\frac{1}{n\left(n+1\right)}\)

=> \(\frac{1}{n\left(n+1\right)}\)\(\frac{1}{n}\)\(\frac{1}{n+1}\)

Tiến Dũng
Xem chi tiết
Tiêu Chiến
23 tháng 3 2021 lúc 18:53

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n.\left(n+1\right)}=\frac{1}{n.\left(n+1\right)}\)

\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n.\left(n+1\right)}\)

Vậy \(\frac{1}{n};\frac{1}{n+1}\)có hiệu và tích bằng nhau

Khách vãng lai đã xóa
Lê Đức Lương
23 tháng 3 2021 lúc 19:28

\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\)

\(=\frac{\left(n+1\right)-n}{n\left(n+1\right)}\)

\(=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)

\(=\frac{1}{n}-\frac{1}{n+1}\)(đpcm)

Cho mik xin tk

Khách vãng lai đã xóa
Lê Thanh Lan
Xem chi tiết
Phạm Văn Nam
28 tháng 3 2016 lúc 21:39

mình biết

doantheertya
Xem chi tiết
Memeface Troller
19 tháng 3 2017 lúc 20:18

\(\frac{1}{n}\times\frac{1}{n+1}=\frac{1}{n}-\frac{1}{n+1}\)

\(\Leftrightarrow\frac{1}{n\left(n+1\right)}=\frac{n+1}{n\left(n+1\right)}-\frac{n}{n\left(n+1\right)}\)

\(\Leftrightarrow\frac{1}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\)(Luôn đúng)

Đông joker
Xem chi tiết
Giáo viên Phương Chi
14 tháng 3 2016 lúc 21:31

lấy từ sgk toán 6

Liêu Phong
Xem chi tiết
TF
5 tháng 3 2016 lúc 7:17

sorry em mới học lớp 5

Phạm Hoàng Nguyên
5 tháng 3 2016 lúc 7:37

me too

Nguyễn Đình Vũ
Xem chi tiết
Huỳnh Quang Sang
12 tháng 7 2018 lúc 20:27

\(a)\)\(\frac{1}{n}\cdot\frac{1}{n+1}=\frac{1}{n(n+1)}\)                  ;       \(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n(n+1)}=\frac{1}{n(n+1)}\)

\(b)A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

   \(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)

  \(=(\frac{1}{5}-\frac{1}{6})+(\frac{1}{6}-\frac{1}{7})+(\frac{1}{7}-\frac{1}{8})+(\frac{1}{8}-\frac{1}{9})+(\frac{1}{9}-\frac{1}{10})+(\frac{1}{10}-\frac{1}{11})+(\frac{1}{11}-\frac{1}{12})\)

    \(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

Dương Lam Hàng
12 tháng 7 2018 lúc 20:29

a) Ta có hiệu của chúng là:

\(\frac{1}{n}-\frac{1}{n+1}=\frac{n+1-n}{n\left(n+1\right)}=\frac{1}{n\left(n+1\right)}\left(1\right)\)

Mặt khác, ta lại có tích của chúng là:

\(\frac{1}{n}.\frac{1}{n+1}=\frac{1}{n\left(n+1\right)}\left(2\right)\) 

Từ (1) và (2) suy ra: \(\frac{1}{n}-\frac{1}{n+1}=\frac{1}{n}.\frac{1}{n+1}\)

Vậy tích của hai phân số này bằng hiệu của chúng (hiệu của phân số lớn trừ phân số nhỏ)

b) \(\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)

\(=\frac{1}{5.6}+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}+\frac{1}{9.10}+\frac{1}{10.11}+\frac{1}{11.12}\)

\(=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+....+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)

\(=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)

Nguyễn thị xuân mai
Xem chi tiết
Nguyễn Quang Huy
5 tháng 3 2016 lúc 20:53

Ta co:1/n.1/n+1=1/n(n+1)=1/n^2+n;1/n-1/n+1=n+1/n(n+1)-n/n(n+1)=n+1-n/n^2+n=1/n^2+n

=>1/n.1/n+1=1/n-1/n+1