Cho A= (2012/1+2011/2+2010/3+.......+1/2012)/(1/2+1/3+1/4+....+1/2013)
Tinh A
Bài 1
so sanh 2010/2011+2011/2012+2012/2013+2013/2010 với 4
Bài 2
A=2011+2012/2012+2013 và B=2011/2012+2012/2013
Bài 3
E=1/3+2/32+3/33+..+100/3100
Chứng minh E<3/4
A=[2012+2011/2+2010/3+2009/4+...1/2012]:[1/2+1/3+1/4+...+1/2012+1/2013]
HOI A CHIA 3 DU BAO NHIEU ?
a)2^x+2^x+1+2^x+2+2^x+3=480
b)(1/2+1/3+...+1/2012+1/2013)*x=2012/1+2011/2+2010/3+..+2/2011+1/2012
So sánh P và Q biết : P = 2010/2011 + 2011/2012 + 2012/2013 và Q = 2010+2011+2012/ 2011 +2012+2013
Chứng tỏ N < 1 với N = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}+\frac{1}{2010^2}\)
Ta có: \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{2010^2}
(1/2+1/3+....+1/2012+1/2013)*x=2012/1+2011/2+2010/3+...+2/2011+1/2012
\(\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right).x=\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}\)
tìm x,biet(1/2+1/3+.............+1/2012+1/2013).x=2012/1+2011/2+2010/3+......+2/2011+1/2012
Tìm x biết (1/2+1/3+...+1/2012+1/2013).x = 2012/1+2011/2+2010/3+...+2/2011+1/2012
A có chia hết cho 3 không?
\(A=\frac{2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}}\)
Xét tử:
\(2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}\)
= \(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)
= \(\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
= \(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
Thay vào ta có:
A = \(\frac{2013\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}\)
=> A = 2013
Mà 2013 chia hết cho 3
=> A chia hết cho 3
so sánh :A= 2010/2011+2011/2012+2012/2013; B= 1/2+1/4+...+1/17