\(A=\frac{\frac{2012}{1}+\frac{2011}{2}+\frac{2010}{3}+...+\frac{1}{2012}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}}\)'
\(A=\frac{\left(1+\frac{2012}{2}+1+\frac{2010}{2}+1+...+\frac{1}{2012}+1\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)
\(A=\frac{\left(1+\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)
\(A=\frac{2013\left(\frac{1}{2013}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}\right)}{\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2013}\right)}\)
\(\Rightarrow A=2013\)
Giải thích giùm e dấu bằng thứ nhất và hai được ko ạ?