Cho A= 1+2-3-4+5+6-7-8+.....+-99-100
a) A có chia hết cho 2;3;5 không?
b) A có bao nhiêu ước tự nhiên, ước nguyên
Chứng minh rằng
a.5^1 - 5^9 + 5^8 chia hết cho 7
b.6 + 6^2 + 6^3 + 6^4 + .........+ 6^9 + 6^10 chia hết cho 7
c.1+2+3+3^2+3^3+....+3^99 chia hết cho 4
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)
\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)
\(5^8-5^7-1\equiv5\left(mod7\right):v\)
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+\cdot\cdot\cdot+6^9\right)\)
\(⋮7\)
Chứng minh rằng : a, M = 21^9+21^8+21^7 +....+ 21+1 chia hết cho 2 và 5 b, N = 6+6^2+6^3 +....+ 6^2020 chia hết cho 7 nhưng không chia hết cho 9 c, P = 4+4^2+4^3 +....+ 4^23+4^24 chia hết cho 20 và 21 d, Q = 6+6^2+6^3 +....+ 6^99 chia hết cho 43
Hộ mình làm bài này nhá :))))))))
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
Cho a/b=1/1×2+1/3×4+1/5×6+1/7×8+…..+1/99×100 . CMR: a chia hết cho 151
\(\frac{a}{b}=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(\frac{a}{b}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{a}{b}=1-\frac{1}{100}=\frac{99}{100}\)
Do đó a = 99k và b = 100k (k \(\in\) N*)
Còn chứng minh a chia hết cho 151 thì bạn xem lại đề, còn tùy vào k thì a mới chia hết cho 151.
Cho A=1+2-3-4+5+6-7-8+....+-99-100
a) A có chia hết cho 2;3;5 không?
b)A có bao nhiêu ước tự nhiên , ước nguyên??/
A=-100
Chia hết cho 2; 3; 5.
A có 9 ước tự nhiên và có 18 ước nguyên
tại sao vậy
:Cho a/b=1/1×2+1/3×4+1/5×6+1/7×8+…..+1/99×100 . CMR: a chia hết cho 151
Cho A= 1+2-3-4+5+6-7-8+.....+-99-100
a) A có chia hết cho 2;3;5 không?
b) A có bao nhiêu ước tự nhiên, ước nguyên
A=-100
Chia hết cho 2; 3; 5.
A có 9 ước tự nhiên và có 18 ước nguyên
Cho A= 1+2-3-4+5+6-7-8+.....+-99-100
a) A có chia hết cho 2;3;5 không?
b) A có bao nhiêu ước tự nhiên, ước nguyên
A=-100
Chia hết cho 2; 3; 5.
A có 9 ước tự nhiên và có 18 ước nguyên
A - 100
Chia hết cho 2 , 3 ,5
A có 9 ước tự nhiên và có 18 ước nguyên
k mình nhé bạn ☺
Cho A= 1+2-3-4+5+6-7-8+.....+-99-100
a) A có chia hết cho 2;3;5 không?
b) A có bao nhiêu ước tự nhiên, ước nguyên
Cho A=1+2-3-4+5+6-7-8+...-99-100
a)A có chia hết cho 2,3,5 không
b)A có bao nhiêu ước là số nguyên, bao nhiêu ước là số tự nhiên