Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Ngọc Thơ
Xem chi tiết
Đinh Thị Khánh Linh
30 tháng 3 2016 lúc 23:04

Ta có: A=10^n+18n-1

A=10^n-1+18n

A=99...9+18n

   n c/số 9

A=11...1.9+18n

n c/số 1

Ta đã biết mọi số tự nhiên đèu có thể viết dưới dạng tổng các chữ số của số đó và một số chia hết cho 9

=>11...1=n+9q  (q thuộc N)

n c/số 1

Ta có:A=(n+9q).9+18n

A= 9n+81q+18n

A=27n+81q

A=27(n+3q)

Vì 27(n+3q) chia hết cho 27 với mọi n thuộc N   

=>A chia hết cho 27 với mọi n thuộc N

Bài toán được chứng minh

Nguyễn Thị Ngọc Thơ
7 tháng 5 2016 lúc 5:37

mình làm được rồi , không phải cách của bạn đâu

Nguyễn Ngọc Mai Chi
Xem chi tiết
FC TF Gia Tộc và TFBoys...
21 tháng 1 2016 lúc 21:19

 Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

Tick nhé  

Vũ Anh Khoa
Xem chi tiết
Nguyễn Minh Quang
24 tháng 3 2022 lúc 23:18

ta sẽ chứng minh bằng quy nạp

Xét n=1 ta có : \(10^n+18n-1=27\text{ chia hết cho 27}\)

Giả sử điều kiện đúng tới n hay \(10^n+18n-1\text{ chia hết cho 27}\)

Xét tại n+1 ta có \(10^{n+1}+18\left(n+1\right)-1=10\times10^n+18n+17=10\times\left(10^n+18n-1\right)-162n+27\)

Dễ thấy \(10^n+18n-1\text{ chia hết cho 27}\) và \(-162n+27=27\times\left(-6n+1\right)\text{ chia hết cho 27}\)

Do đó điều kiện đúng với n+1 

Theo nguyên lý quy nạp thì A chia hết cho 27 với mọi số tự nhiên n

Khách vãng lai đã xóa
buibaominh
Xem chi tiết
Trịnh Tiến Đức
13 tháng 9 2015 lúc 10:33

 

Ta có : 10^n + 18n - 1 = 10^n - 1 - 9n + 27n 

                                 = 999....99 (nchu so 9) - 9n + 27n 

                                 =9 . (111......111 - n ) + 27n

Vì n và so co tong cac chu so bang n khi chia cho 9 deu co cung so du nen hieu cua chung chia het cho 9 

Suy ra 111....111 (n chu so 1 ) - n chia het cho 9 

Suy ra ( 111....111 - n ) . 9 chia het cho 9 vi 9 chia het cho 3

Mà 27n chia het cho 27 nen suy ra 10^n + 18n - 1 chia het cho 27 

lik-e cho mình nhé bạn

Trịnh Linh
Xem chi tiết
Nguyễn Bảo Ngọc
Xem chi tiết
nguyễn ngọc linh
Xem chi tiết
nguyễn ngọc linh
20 tháng 7 2015 lúc 10:30

chính xác 100/100

 

Hoàng Tử của dải Ngân Hà
9 tháng 8 2016 lúc 9:48

d) \(10^n+72n-1\)\(=100...0-1+72n\)

=\(999...9-9n+81n\)

     n chữ số 9

=\(9.\left(111...1-n\right)+81n\)

VÌ 1 số và tổng các chữ số có cùng số dư trong phép chia cho 9 => 111...1 - n chia hết 9

mà 81n chia hết 9 => 10n + 72n -1 chia hết 9

b) \(10^n+18n-1\)

<=> \(100..0+\left(27n-9n\right)-1\)chia hết \(27\)

          n

<=> \(\left(100...0-1-9n\right)+27n\)chia hết \(27\)

             n

<=> \(\left(99...9-9n\right)+27n\)chia hết \(27\)

               n

<=> \(9.\left(11..1-n\right)+27n\)chia hết \(27\)

<=> \(9.9k+27n\)chia hết \(27\)

<=> \(81k+27n\)chia hết \(27\)

Sky _ Nguyễn
9 tháng 8 2016 lúc 9:51

a) \(10^{28}+8\)chia hết cho 72

\(\Rightarrow10^{28}:9\)dư 1

\(\Rightarrow8:9\)dư 8

\(\Rightarrow1+8=9\)chia hết cho 9

\(\Rightarrow10^{28}+8\)chia hết cho 9 ( 1 )

\(10^{28}\)chia hết cho 8 ( vì 3 sớ tận cùng là 000 chia hết cho 8 )

8 chia hết cho 8

\(\Rightarrow10^{28}+8\)chia hết cho 8 ( 2 )

Từ ( 1 ) và ( 2 ) kết hợp với UCLN ( 8 ; 9 ) = 1 => ĐPCM

b) \(8^8+2^{20}=\left(2^3\right)^8+2^{20}=2^{24}+2^{20}=2^{20}.\left(2^4+1\right)=2^{20}.17\)chia hết cho 7 => ĐPCM

c) Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)

d

Nguyễn Hương Ly
Xem chi tiết
Mạnh Lê
13 tháng 3 2017 lúc 20:18

 C1: 10^n + 18n - 28 = (10^n - 9n -1) + (27n - 27) 
Ta có: 27n - 27 chia hết cho 27 (1) 
10n - 9n - 1 = [( 9...9 + 1) - 9n - 1] = 9...9 - 9n = 9 (1...1 - n) chia hết cho 27 (2)
Vì 9 chia hết cho 9 và 1...1 - n chia hết cho 3. Do 1...1 - n là một số có tổng các chữ số chia hết cho 3 và từ (1) và (2) => ( 10^n+18n-28 ) chia hết cho 27. 
Vậy ( 10^n+18n-28 ) chia hết cho 27.(đpcm) 

C2: *Với n=1, ta có: 10 + 18 - 28 = 0 chia hết cho 27. 
Giả sử n=k, ta có: 10^k + 18k - 28 chia hết cho 27. 
=> 10^k + 18k - 28 = 27m (m là số nguyên) 
=> 10k = 27m -18k + 28 (1) 
*Với n=k+1, ta có: 10^k+1 + 18(k+1) - 28 = 10.10^k + 18k - 10 (2) 
Thay (1) vào (2), ta được: 
10^k+1 + 18(k+1) - 28 = 10 (27m - 18k + 28) + 18k - 10 = 270m - 162k + 270 chia hết cho 27. 
Vậy ( 10^n+18n-28 ) chia hết cho 27 với n thuộc N*.(đpcm

xin chào
25 tháng 8 2017 lúc 16:37

sai cách cm quy nạp rùi bạn ơi

nguyen hoai phuong
15 tháng 10 2017 lúc 20:10

thank for

Trần Thị Vân An
Xem chi tiết
Millefiori Firianno Bisc...
1 tháng 7 2016 lúc 18:26

 Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9) 
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A 
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1). 
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1). 
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm).

SKT_Rengar Thợ Săn Bóng...
1 tháng 7 2016 lúc 18:26

ban vào câu hỏi tương tự

Le Thi Khanh Huyen
1 tháng 7 2016 lúc 18:34

Ta có:

10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)  = 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A

 Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).  

Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3.

Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).  

=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3

=> 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3

=> 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)