CMR: 31/2 . 32/2 . 33/2 ... 60/2 = 1.3.5.7..59
chứng tỏ rằng:
31/2*32/2*33/2*...*60/2=1.3.5.7....59
Ta có : 1.3.5.7. ... .59
= \(\frac{1.2.3.4.5.....58.59.60}{2.4.6.8.....58.60}\)
= \(\frac{\left(1.2.3.....30\right).\left(31.32.....60\right)}{\left(1.2.3.....30\right).2.2.....2}\)
= \(\frac{31.32.....60}{2.2.....2}\)
= \(\frac{31}{2}.\frac{32}{2}.....\frac{58}{2}.\frac{60}{2}\) ( đpcm )
So sánh \(P=\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}\) và Q=1.3.5.7........59
Ta có:
31/2.32/2.33/2....60/2=31.32......60/2^30
=(31.32.33....60)(1.2.3....30)/2^30(1.2.3...30)
=(1.3.5...59)(2.4.6...60)/(2.4.6...60)=1.3.5...59
=>P=Q
nhớ ****
cái dòng 3, 4 mk ko hiểu sao 2^30.(1.2.3....30) lại bằng 2.4.6...60
so sánh:
\(P=\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}\)và \(Q=1.3.5.7...59\)
A = \(\frac{31}{2}.\frac{32}{2}.\frac{33}{2}.....\frac{60}{2}\) va B = 1.3.5.7........59
CMR: 31/2*32/2*33/2*...*60/2=1*3*5*...*59
so sánh \(P=\frac{31}{2}.\frac{32}{2}.\frac{33}{2}...\frac{60}{2}\) và \(Q=1.3.5.7...59\)
CMR: \(\frac{31}{2}.\frac{32}{2}.\frac{33}{2}.....\frac{60}{2}=1.3.5.....59\)
\(\frac{31}{2}\)\(.\)\(\frac{32}{2}\)\(.\)\(\frac{33}{2}\)\(....\)\(\frac{60}{2}\)
\(=\)\(\left[\left(31.32.33....60\right)\right]\)\(.\)\(\left(\frac{1.2.3....30}{2^{30}}\right)\)\(.\)\(\left(1.2.3....30\right)\)
\(=\)\(\left[\frac{\left(1.3.5....59\right).\left(2.4.6....60\right)}{2.4.6....60}\right]\)\(=\)\(1.3.5....59\)
Vậy \(\frac{31}{2}\)\(.\)\(\frac{32}{2}\)\(.\)\(\frac{33}{2}\)\(....\)\(\frac{60}{2}\)\(=\)\(1.3.5....59\)
ta có:Đặt A= \(1.3.5.....59=\frac{1.2.3.4.....59.60}{2.4.6.....60}\)
=\(\frac{1.2.3.....59.60}{2^{30}.\left(1.2.3.....30\right)}=\frac{31.32.....59.60}{2^{30}}\)
= \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\)
vì \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\) = \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\)
\(\Rightarrow\)A= \(\frac{31}{2}.\frac{32}{2}.....\frac{59}{2}.\frac{60}{2}\)
( Điều phải chứng minh)
toán nâng cao lớp 6 đấy bạn nha
So sánh P và Q:
P= \(\dfrac{31}{2}.\dfrac{32}{2}.\dfrac{33}{2}.....\dfrac{60}{2}\)
và Q= \(1.3.5.7.....59\)
Giải thích rõ ràng nhé!
Ta có :
\(\dfrac{31}{2}.\dfrac{32}{2}.\dfrac{33}{2}.....\dfrac{60}{2}=31.32.33.....\dfrac{60}{2^{30}}\)
(31.32.33....60)(1.2.3....30)/230(1.2.3....30)
= (1.3.5.....59)(2.4.6.....60 )/( 2.4.6....60 ) = 1.3.5....59
\(\Rightarrow P=Q\)
CM: 31/2 + 32/2 + 33/2 + 34/2 +...+ 60/2 = 1.3.5...59
31/2.32/2.33/2....60/2=(31.32.33...60)/230
=[(31.32.33...60).(1.2.3...30)]/230.(1.2.3...30)
=[(1.3.5...59).(2.4.6....60)]/(2.4.6...60)=1.3.5...59