Chứng minh đa thức sau vô nghiệm :x^2 +2x +2
Chứng minh rằng đa thức sau vô nghiệm :f(x)=x^2+2x+3
\(x^2+2x+3=0\)
\(=>\hept{\begin{cases}x^2=0\\2x=0\\3=0\end{cases}}\)
\(=>\hept{\begin{cases}x=0\\x=0\\3\end{cases}=>0+0+3\ne0}\)
=> \(x^2+2x+3\)vô nghiệm
\(f\left(x\right)=x^2+2x+3=x^2+2x+1+2=\left(x+1\right)^2+2\)
Ta có: \(\left(x+1\right)^2\ge0\) với mọi \(x\in R\)
\(\Rightarrow\left(x+1\right)^2+2\ge2>0\)với mọi \(x\in R\)
\(\Rightarrow x^2+2x+3>0\) với mọi \(x\in R\)
Vậy đa thức \(f\left(x\right)=x^2+2x+3\) vô nghiệm
Chứng minh đa thức sau vô nghiệm
2x2-x2-9
Sửa đề \(2x^2-x^2+9\)
\(=x^2+9\)
Do \(x^2\ge0\)
\(\Rightarrow x^2+9\ge9\)
Vậy đa thức trên vô nghiệm
\(2x^2-x^2-9=x^2-9=\left(x-3\right)\left(x+3\right)\)
Where is VT ?
chứng minh rằng đa thức sau vô nghiệm :
x^2 + 2x + 2016
x^2 + 2x +2016 = x^2 + x + x + 1 +2015
= x ( x+1 ) + 1 ( x + 1 ) +2015
= ( x + 1 ) ( x +1 ) + 2015
= ( x + 1 )^2 + 2015
Xét (x + 1 )^2 + 2015 = 0
=> ( x + 1 )^2 = - 2015 ( vô lí )
vì ( x + 1 )^2 luôn lớn hơn hoặc bằng 0 với mọi x
vậy đa thức trên vô nghiệm ( đúng ko các bạn )
Mọi người biết Trần Thu Hà như thế nào ko :cướp nick hu hu vừa mới cướp nick mình
nói tục tiểu
đi làm gian hồ
mình sẽ mét với online math luôn
Chứng minh đa thức sau vô nghiệm : 2x2 + 2x + 3
Đặt đa thức đó là A
Ta có: \(A=2\left(x^2+x+\frac{3}{2}\right)=2\left(x^2+2\times x\times\frac{1}{2}+\frac{1}{4}-\frac{1}{4}+\frac{3}{2}\right)\)
\(A=2\left(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\right)\)
\(A=2\left(x+\frac{1}{2}\right)^2+\frac{5}{2}\)
\(A\ge\frac{5}{2}>0\)
Vậy A vô nghiệm
2x^2>=0 voi moi x
2x >=0 với mọi x
3>0
Vậy đa thức trên vô nghiệm
Chứng minh đa thức sau vô nghiệm
X4+2x3+3x2+2x+1
\(x^4+2x^3+3x^2+2x+1=\left(x^4+2x^3+x^2\right)+\left(2x^2+2x+1\right)\)
\(=x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)\)
= \(\left(x^2+2\right)\left(x^2+x+1\right)\)
Nhận thấy \(\hept{\begin{cases}x^2+2>0\\x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\end{cases}}\forall x\in R\)
Suy ra , đa thức trên vô nghiệm
1. Tìm nghiệm của đa thức sau :
a) 9x + 2x - x
b) 25 - 9x
2. Chứng minh đa thức vô nghiệm :
x2 + x4 + 1
1) a) 9x+2x-x=0
11x-x=0
10x=0
x=0
b) 25-9x=0
9x=25
x=25/9
2) \(x^2+x^4+1=x^4+x^2+1=x^4+2x^2-x^2+1\)
\(=\left(x^4+2x^2+1\right)-x^2=\left(x^2+1\right)^2-x^2=0\)
\(\Rightarrow\left(x^2+1\right)^2=0;x^2=0\)
mà \(x^2+1>0\)nên \(\Rightarrow\)phương trình vô nghiệm
1)
a) Ta có :
9x + 2x - x = 0
( 9 + 2 - 1 )x = 0
10x = 0
x = 0 : 10
x = 0
Vậy x = 0 là nghiệm của đa thức 9x + 2x - x
b) Ta có :
25 - 9x = 0
9x = 25
x = 25 ; 9
x = 25/9
Vậy x = 25/9 là nghiệm của đa thức 25 - 9x
2. Ta có :
Vì x2 luôn > 0 với mọi giá trị của x
x4 luôn lớn hơn 0 với mọi giá trị x
1 > 0
Vậy x2 + x4 + 1 > với mọi giá trị x
Hay da thức x2 + x4 + 1 vô nghiệm
a) 9x+2x-x=0
x(9+2-1)=0
10x=0
=)x=0
b)25-9x=0
9x=25
=)x=25/9
2)
x2>=0
x4>=0
=)x2+x4>=0
=)x2+x4+1>=1
=)da thức vô nghiệm
Chứng minh đa thức -2x2+x-3 vô nghiệm.
Ta có: -2x^2+x-3=-x^2-x^2+x-1/4-11/4= -(x^2-x+1/4)-x^2-11/4= -(x-1/2)^2-x^2-11/4
Đa thức trên luôn bé hơn 0. Do đó đa thức trên ko có nghiệm
Ta có : -2x2+x >/ 0
=> -2x2+x-3 >/ -3 < 0
Vậy đa thức trên không có nghiệm (vô nghiệm)
Làm thế nào để chứng minh đa thức này vô nghiệm :2x^2-2x+2?
Làm thế nào để chứng minh đa thức này vô nghiệm :12x12 - 12x + 12 ????
hichic ??????
2x2-2x+2=2(x2-x+1)
\(=2\left(x^2-\frac{1}{2}x-\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}\right)\)
\(=2\left[x\left(x-\frac{1}{2}\right)-\frac{1}{2}\left(x-\frac{1}{2}\right)+\frac{3}{4}\right]=2\left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)+\frac{3}{4}\)
\(=2\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\)
Vì \(2\left(x-\frac{1}{2}\right)^2\ge0\Rightarrow2\left(x-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}>0\)
=>đa thức vô nghiệm
chứng minh rằng đa thức sau vô nghiệm :\(x^4\)\(+2x^2+1\)
Áp dụng hằng đẳng thức đáng nhớ ta có :
x4+2x2+1=(x2+1)2
Ta có : (x2+1)2 luôn luôn lớn hơn hoặc bằng 0
=>PT trên vô nghiệm
Theo hằng đẳng thức đáng nhớ , ta có :
\(x^4+2x^2+1=\left(x^2+1\right)^2\)
Vì \(x^2\ge0\).Nên \(x^2+1\ge1;\Rightarrow x^2+1>0\)
\(\Rightarrow\left(x^2+1\right)^2>0\)
Vậy phương trình vô nghiệm.