Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trần Công Hưng
Xem chi tiết
Võ Trương Anh Thư
Xem chi tiết
chintcamctadungnennoitrc...
Xem chi tiết
Dương Ngọc Nguyễn
13 tháng 9 2021 lúc 15:25

undefined

Linh Chi
Xem chi tiết
NUM NUM OKKE
Xem chi tiết
Incursion_03
27 tháng 3 2019 lúc 22:53

Theo cô-si thì \(2\sqrt{2x.3y}\le2x+3y\le2\Rightarrow xy\le\frac{1}{6}\)

\(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{26}{3xy}\)

                                            \(\ge\frac{\left(2+2\right)^2}{4x^2+9y^2+12xy}+\frac{26}{\frac{3.1}{6}}\)

                                            \(=\frac{14}{\left(2x+3y\right)^2}+\frac{26.6}{3}=56\)

\("="\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)

Tran Le Khanh Linh
16 tháng 8 2020 lúc 19:23

ta thấy \(A=\frac{4}{4x^2+9y^2}+\frac{9}{xy}=\frac{4}{4x^2+9y^2}+\frac{4}{12xy}+\frac{26}{3xy}\ge\frac{16}{\left(2x+3y\right)^2}+\frac{26}{3xy}\)(1)

lại có \(2x+3y\le2\Leftrightarrow\left(2x+3y\right)^2\le4\Leftrightarrow4x^2+9y^2+12xy\le4\left(2\right)\)

mặt khác \(4x^2+9y^2\ge12xy\)(theo Bất Đẳng Thức Cosi cho x,y>0) (3)

từ (1) và (2) => \(12xy+12xy\le4\Leftrightarrow3xy\le\frac{1}{2}\left(4\right)\)

từ (1) và (4) => \(A\ge\frac{16}{4}+\frac{26}{\frac{1}{2}}=4+52=56\)

dấu "=" xảy ra khi \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{3}\end{cases}}\)

Khách vãng lai đã xóa
Nguyễn Hiền Phương
Xem chi tiết
Nguyễn Phong
Xem chi tiết
kudo shinichi
20 tháng 5 2019 lúc 6:03

\(M=8x^3+27y^3+4x^2+9y^2+5\)

\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)+4x^2+9y^2+5\)

\(=\left(2x+3y\right)\left(4x^2-6xy+9y^2\right)+4x^2+9y^2+5\)

\(=4x^2-6xy+9y^2+4x^2+9y^2+5\)

Áp dụng BĐT AM-GM có:

\(1\ge2.\sqrt{6xy}\)

\(\Leftrightarrow xy\le\frac{1}{24}\)

Dấu " = " xảy ra <=>  2x=3y <=> x=0,25 y=1/6

Áp dụng BĐT Cauchy-schwarz ta có:

\(M\ge\frac{2.\left(2x+3y\right)^2}{2}-6xy+5\ge\frac{2}{2}-\frac{6.1}{24}+5=6.25\)

Dấu " = " xảy ra <=>  2x=3y <=> x=0,25 y=1/6

KL:.....................................................................

Nguyen Ngo
Xem chi tiết
Cuồng Song Joong Ki
Xem chi tiết