Cho X thuộc Z thõa mãn -2005< x \(\le\) 2015
cho x ∈ z thõa mãn -2005<x ≤ 2005
a)Tính tổng các số nguyên x b) Tính tích các số nguyên x
cho x ∈ z thõa mãn -2005<x ≤ 2005
a)Tính tổng các số nguyên x b) Tính tích các số nguyên x
Cho x thuộc Z thoả mãn -2005< x <= 2005
x=(2004 ; -2003 ;-2002;............2005)
Bài này dễ vậy mk ko làm được à
~Study well~ :)
X=(2004 ; -2003 ;- 2002;......................2005)
Hok tốt!!!!!
Cho x \(\in\) Z , thỏa mãn -2005 < x \(\le\)2005
\(-2005< x\le2005\)
Vì \(x\in Z\)
\(\Leftrightarrow x\in\left(-2004;-2003;-2002;...;0;...;2003;2004\right)\)
Do x thuộc Z và ( - 2005) < x < 2005
=> x c { -2004;-2003;-2002;-2001; . . . . . . 2004 }
VÌ −2005<x≤2005
MÀ x∈Z
⇔x∈(−2004;−2003;−2002;...;0;...;2003;2004)
cho 3 số xyz thõa mãn x/2014=y/2015=z/2016. CMR(x-3)^3=8(x-y)^2 (y-z)
Giải chi tiết giúp ạ
cho 3 số x, y, z khác 0 thõa mãn\(\hept{\begin{cases}x+y+z=2015\\\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\end{cases}}\)
Chứng minh rằng trong 3 số x, y, z tồn tại 2 số đối nhau
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{2015}\)
\(\Rightarrow\)\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) (do x+y+z = 2015)
\(\Rightarrow\)\(\frac{xy+yz+xz}{xyz}=\frac{1}{x+y+z}\)
\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)=xyz\)
\(\Rightarrow\)\(\left(xy+yz+xz\right)\left(x+y+z\right)-xyz=0\)
\(\Rightarrow\)\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=0\)
đến đây tự lm nốt nha
Cho x,y,z thuộc R+Thõa mãn x+y+z=1. Tìm Min
P=1/16n+1/4y+1/z
cho x,y,z thuộc số thực dương thõa mãn: x+y+z+xy+yz+zx=6. chứng minh: x^2+y^2+z^2>=3
ĐẶt \(A=x^2+y^2+z^2\Rightarrow4A-12=4\left(x^2+y^2+z^2\right)-2\left(x+y+z+xy+yz+zx\right)\)
\(\Rightarrow3A-12=\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2+\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2-3\)
\(\Rightarrow3A\ge9\Rightarrow A\ge3\)
dấu= xảy ra khi x=y=z=1
Sử dụng các bđt cơ bản
\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\ge xy+yz+zx\)
Nội qui tham gia "Giúp tôi giải toán"
1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;
2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.
3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.
Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.
mong các bn đừng làm như vậy nah
cho các số thực dương x;y;z thõa mãn \(x+y+z=1\)chứng minh rằng:
\(\frac{x}{x+yz}+\frac{y}{y+zx}+\frac{z}{z+xy}\le\frac{9}{4}\)
Đặt \(a=\sqrt{\frac{yz}{x}},b=\sqrt{\frac{zx}{y}},c=\sqrt{\frac{xy}{z}}\) \(\Rightarrow ab+bc+ac=1\)
Suy ra bài toán trở về dạng chứng minh \(\frac{1}{a^2+1}+\frac{1}{b^2+1}+\frac{1}{c^2+1}\le\frac{9}{4}\)
\(\Leftrightarrow1-\frac{a^2}{a^2+1}+1-\frac{b^2}{b^2+1}+1-\frac{c^2}{c^2+1}\le\frac{9}{4}\)
\(\Leftrightarrow\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\ge\frac{3}{4}\)(*)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{a^2}{a^2+1}+\frac{b^2}{b^2+1}+\frac{c^2}{c^2+1}\ge\frac{\left(a+b+c\right)^2}{a^2+b^2+c^2+3}\)
Đặt t = a+b+c \(\Rightarrow a^2+b^2+c^2=t^2-2\)
Ta cần chứng minh \(\frac{t^2}{t^2+1}\ge\frac{3}{4}\Leftrightarrow4t^2\ge3t^2+3\Rightarrow t^2\ge3\)(Luôn đúng vì \(\left(a+b+c\right)^2\ge3\left(ab+bc+ac\right)=3\))
Vậy ta có đpcm
Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và không nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi.Để câu trả lời của bạn nhanh chóng được duyệt và hiển thị, hãy gửi câu trả lời đầy đủ và nên:
Yêu cầu, gợi ý các bạn khác chọn (k) đúng cho mìnhChỉ ghi đáp số mà không có lời giải, hoặc nội dung không liên quan đến câu hỏi