Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Thị Ái My
Xem chi tiết
Nguyễn Văn Tuấn Anh
15 tháng 7 2019 lúc 16:39

a,ĐKXĐ:\(\orbr{\begin{cases}x\ge2\\x\le-2\end{cases}}\)

  \(\sqrt{x-2}.\sqrt{x+2}-\sqrt{x-2}=0\)

 \(\sqrt{x-2}\left(\sqrt{x+2}-1\right)=0\) 

\(\Rightarrow\orbr{\begin{cases}\sqrt{x-2}=0\\\sqrt{x+2}-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

Phan Nghĩa
19 tháng 8 2020 lúc 19:05

\(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}=4-\sqrt{x}-\sqrt{y}\left(đk:x;y>0\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}=4\)

Do x,y là các số thực dương nên sử dụng BĐT AM-GM cho 2 số không âm ta có :

\(\frac{1}{\sqrt{x}}+\sqrt{x}\ge2\sqrt{\frac{1}{\sqrt{x}}.\sqrt{x}}=2\)

\(\frac{1}{\sqrt{y}}+\sqrt{y}\ge2\sqrt{\frac{1}{\sqrt{y}}.\sqrt{y}}=2\)

Cộng theo vế các bất đẳng thức cùng chiều ta được :

\(\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}\ge2+2=4\)

Dấu = xảy ra khi và chỉ khi \(\hept{\begin{cases}\frac{1}{\sqrt{x}}=\sqrt{x}\Leftrightarrow x=1\\\frac{1}{\sqrt{y}}=\sqrt{y}\Leftrightarrow y=1\end{cases}\Leftrightarrow}x=y=1\)

Vậy nghiệm của phương trình trên là \(x=y=1\)

Khách vãng lai đã xóa
Nguyễn Hương Ly
Xem chi tiết
Nguyễn Mai
Xem chi tiết
Nàng tiên cá
Xem chi tiết

chịu thua vô điều kiện xin lỗi nha : v

muốn biết câu trả lời lo mà sệt trên google ấy đừng có mà dis:v

kudo shinichi
30 tháng 7 2019 lúc 19:04

\(A=\left[\left(\frac{1}{\sqrt{x}}+\frac{1}{\sqrt{y}}\right).\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{1}{x}+\frac{1}{y}\right]:\frac{\sqrt{x^3}+y.\sqrt{x}+x\sqrt{y}+\sqrt{y^3}}{\sqrt{x^3y}+\sqrt{xy^3}}\)

\(\Leftrightarrow A=\left[\frac{\sqrt{x}+\sqrt{y}}{\sqrt{xy}}.\frac{2}{\sqrt{x}+\sqrt{y}}+\frac{x+y}{xy}\right]:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)

\(\Leftrightarrow A=\frac{2\sqrt{xy}+x+y}{xy}:\frac{\left(\sqrt{x}+\sqrt{y}\right)^3}{\sqrt{xy}\left(x+y\right)}\)

\(\Leftrightarrow A=\frac{\sqrt{xy}\left(x+y\right)}{xy\left(\sqrt{x}+\sqrt{y}\right)}\)

\(\Leftrightarrow A=\frac{\left(x+y\right)}{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}\)

sai sót chỗ nào chỉ cho mk nhé. ý kia chốc nx làm nốt

Hô Ai Quynh Như
Xem chi tiết
Phạm Nguyễn Hoàng Anh
29 tháng 7 2017 lúc 10:51

Thưa....bạn.....mình....chịu.....

_ɦყυ_
16 tháng 8 2017 lúc 23:11

Ê bạn... thiên vị ak.

Sao ko đợi người nào giỏi trả lời

LÊ VĂN DŨNG
2 tháng 9 2017 lúc 8:16

bạn ơi mình chịu game over

Nguyễn Hương Ly
Xem chi tiết
Nguyễn Như Hoài
Xem chi tiết
Mr Lazy
20 tháng 6 2015 lúc 20:45

\(\Leftrightarrow\frac{1}{\sqrt{x}}+\sqrt{x}+\frac{1}{\sqrt{y}}+\sqrt{y}=4\)

Ta có: \(VT=\left(\frac{1}{\sqrt{x}}+\sqrt{x}\right)+\left(\frac{1}{\sqrt{y}}+\sqrt{y}\right)\ge2\sqrt{\frac{1}{\sqrt{x}}.\sqrt{x}}+2\sqrt{\frac{1}{\sqrt{y}}.\sqrt{y}}=4=VP\)

Dấu "=" xảy ra khi và chỉ khi \(x=1;y=1\)

Vậy \(\left(x;y\right)=\left(1;1\right)\) là nghiệm của phương trình

Tiên Hồ Đỗ Thị Cẩm
Xem chi tiết
Phạm Thị Thùy Linh
2 tháng 7 2019 lúc 12:21

\(a,\frac{\sqrt{108x^3}}{\sqrt{12x}}=\frac{\sqrt{36.3.x^3}}{\sqrt{3.4.x}}=\frac{6\sqrt{3}.\sqrt{x}^3}{2\sqrt{3}.\sqrt{x}}=3\sqrt{x}^2=3x\)

\(b,\frac{\sqrt{13x^4y^6}}{\sqrt{208x^6y^6}}=\frac{\sqrt{13}.\sqrt{x^4}.\sqrt{y^6}}{\sqrt{16.13}.\sqrt{x^6}.\sqrt{y^6}}=\frac{\sqrt{13}.x^2y^3}{4\sqrt{13}x^3y^3}=\frac{1}{4x}\)

\(c,\frac{x\sqrt{x}+y\sqrt{y}}{\sqrt{x}+\sqrt{y}}-\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(=\frac{\sqrt{x}^3+\sqrt{y}^3}{\sqrt{x}+\sqrt{y}}-\left(x+2\sqrt{xy}+y\right)\)

\(=\frac{\left(\sqrt{x}+\sqrt{y}\right)\left(x-\sqrt{xy}+y\right)}{\sqrt{x}+\sqrt{y}}-x-2\sqrt{xy}-y\)

\(=x-\sqrt{xy}+y-x-2\sqrt{xy}-y=-3\sqrt{xy}\)

Phạm Thị Thùy Linh
2 tháng 7 2019 lúc 12:26

\(d,\sqrt{\frac{x-2\sqrt{x}+1}{x+2\sqrt{x}+1}}=\frac{\sqrt{\left(\sqrt{x}-1\right)^2}}{\sqrt{\left(\sqrt{x}+1\right)^2}}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

Đk chỗ này là \(\sqrt{x}-1\ge0\Rightarrow\sqrt{x}\ge\sqrt{1}\Rightarrow x\ge1\)nhé 

\(e,\frac{x-1}{\sqrt{y}-1}.\sqrt{\frac{\left(y-2\sqrt{y}+1\right)^2}{\left(x-1\right)^4}}=\frac{x-1}{\sqrt{y}-1}.\frac{y-2\sqrt{y}+1}{\left(x-1\right)^2}\)

\(=\frac{\left(x-1\right)\left(\sqrt{y}-1\right)^2}{\left(\sqrt{y}-1\right)\left(x-1\right)^2}=\frac{\sqrt{y}-1}{x-1}\)

Tiên Hồ Đỗ Thị Cẩm
2 tháng 7 2019 lúc 12:43

 Linh ơi, câu a,b,c bạn làm đều đúng hết kết quả cách làm đều đúng nhưng mà ở chỗ câu c): \(\sqrt{x}^3+\sqrt{y}^3\)

không phải vậy đâu, mặc dù mình biết bạn hiểu, hay do sơ suất, nhưng mà chỗ đó là \(\sqrt{x^3}+\sqrt{y^3}\)nha! Dù sao cũng cảm ơn bạn nha!

SuSu
Xem chi tiết