bài 8 có bao nhiêu số nguyên tố p thỏa mãn 4p + 11 là số nguyên tố nhỏ hỏn 40
tìm số nguyên tố p ,thỏa mãn điều kiện 4p +11 là số nguyên tố nhỏ hơn 33
tìm các số nguyên tố p ,thỏa mãn điều kiện 4p +11 là số nguyên tố nhở hơn 33
bn tham khảo lick này đi:https://olm.vn/hoi-dap/detail/6126440022.html
Lời giải:
Nếu $p$ chia hết cho $5$ thì $p=5$. Khi đó $4p^2+1=4.5^2+1=101$ là snt và $6p^2+1=6.5^2+1=151$ là snt (thỏa mãn)
Nếu $p$ không chia hết cho 5. Khi đó $p^2$ chia $5$ dư $1$ hoặc $4$.
+ Nếu $p^2$ chia $5$ dư $1$
$\Rightarrow 4p^2$ chia $5$ dư $4$. Khi đó $4p^2+1$ chia hết cho $5$. Mà $4p^2+1>5$ nên không là snt (trái với giả thiết)
+ Nếu $p^2$ chia $5$ dư $4$
$\Rightarrow 6p^2$ chia $5$ dư $24$, hay dư $4$
$\Rightarrow 6p^2+1$ chia hết cho $5$. Mà $6p^2+1>5$ nên không là snt (trái với đề)
Vậy $p=5$ là kết quả duy nhất thỏa mãn.
4p + 11 là số nguyên tố nhỏ hơn 30
p + 10 và p + 14 là các số nguyên tố
p + 6; p + 8; p + 12 và p + 14 là các số nguyên tố
Bài 13. Có bao nhiêu số có 3 chữ số mà mỗi chữ số của nó là ước nguyên tố của chúng? Ví dụ: Số abc thỏa mãn thì a, b, c là các ước nguyên tố của abc
Bài 14. Tìm các số nguyên tố a, b, c biết \(\dfrac{abc}{a+b+c}\) = 3.
Bài 15. Tìm các số nguyên tố p, q sao cho 7p + q và pq + 11 cũng là các số nguyên tố.
Bài 21. Một số tự nhiên n có 30 ước số. Chứng minh rằng tích tất cả các ước của n là n 15.
nam moooooooooooooooooooooooooooooooo
Bài 1: Cho số nguyên tố p lớn hơn 5 thỏa mãn p + 14 và p2 + 6 cũng là số nguyên tố. Chứng minh rằng p + 11 chia hết cho 10.
Bài 2: Cho số nguyên tố p lớn hơn 3 thỏa mãn 2p + 1 cũng là số nguyên tố. Chứng minh rằng p + 1 chia hết cho 6.
Bài 3: Cho các số nguyên tố p thỏa mãn 8p - 1 cũng là số nguyên tố. Chứng minh rằng 8p + 1 cũng là hợp số.
Bài 4: Tổng của 3 số nguyên tố bằng 1012. Tìm số nhỏ nhất trong 3 số nguyên tố đó.
mình chỉ biết bài 4 thôi
Bài 4: Vì tổng bằng 1012 nên trong 3 số nguyên tố đó thì phải có 1 số nguyên tố là số chẵn. Nên số chẵn đó là 2 đồng thời là số nhỏ nhất. Vậy số 2 là số nguyên tố nhỏ nhất trong 3 số nguyên tố đó
Cho p là số nguyên tố lớn hơn 3 thỏa mãn 4p+1 là số nguyên tố. Chứng minh rằng 2p+1 là hợp số
Vì p là SNT >3\(\Rightarrow p\)có dạng 3k+1
hoặc 3k+2 ( k\(\in\)N*)
+) Với \(p=3k+2\Rightarrow4p+1=4.\left(3k+2\right)+1=12k+8+1=12k+9=3\left(4k+3\right)⋮3\)
Do k\(\in\)N*\(\Rightarrow4k+3>0\)
\(\Rightarrow3\left(4k+3\right)\)là hợp số
\(\Rightarrow3k+2\)( loại)
+) Với \(p=3k+1\Rightarrow4p+1=4.\left(3k+1\right)+1=12k+4+1=12k+5\)( là số nguyên tố)
\(\Rightarrow2p+1=2\left(3k+1\right)+1=6k+2+1=6k+3=3\left(2k+1\right)⋮3\)
Do k\(\in\)N*\(\Rightarrow3\left(2k+1\right)>0\)
\(\Rightarrow3\left(2k+1\right)\)là hợp sốVậy Nếu 4p+1 là SNT thì 2p+1 là hợp sốBổ sung chỗ
\(\Rightarrow p=3k+2\)( loại ) nhé em
Tìm số nguyên tố p để 4p+11 là số nguyên tố nhỏ hơn 30
Ta có: p≥2p≥2
Ta lại có:
4p+11<304p+11<30
⇒4p+11≤29⇒4p+11≤29
⇒4p≤18⇒4p≤18 hay 4p≤164p≤16
⇒p≤4⇒p≤4
Do đó p∈{2;3}p∈{2;3}
Ta xét 2TH:2TH:
TH1:TH1: Nếu p=2p=2 thì 4.2+11=8+11=19(tmđk)4.2+11=8+11=19(tmđk)
TH2:TH2: Nếu p=3p=3 thì 4.3+11=12+11=23(tmđk)4.3+11=12+11=23(tmđk)
Vậy: p∈{2;3}
Có bao nhiêu số nguyên tố x thỏa mãn 40 < x < 50?
A. 2
B. 8
C. 3
D. 4
Đáp án cần chọn là: C
Các số x thỏa mãn 40<x<50 là: 41;42;43;44;45;46;47;48;49
Trong đó các số nguyên tố là: 41;43;47.