a,Cho a2k=5.Tính 6a6k - 4
b,Tìm x,y và z nếu :
(5x2y4)3 + (-7y3z5)2 = 0
1. Cho \(x,y,z>0\) và \(x^3+y^2+z=2\sqrt{3}+1\). Tìm GTNN của biểu thức \(P=\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\)
2. Cho \(a,b>0\). Tìm GTNN của biểu thức \(P=\dfrac{8}{7a+4b+4\sqrt{ab}}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
1) Áp dụng bđt Cauchy cho 3 số dương ta có
\(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)
\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)
\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)
Cộng (1);(2);(3) theo vế ta được
\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)
\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)
\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)
2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)
Dấu"=" khi a = 4b
nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)
Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)
Đặt \(\sqrt{a+b}=t>0\) ta được
\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)
\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)
Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)
nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)
khi đó a + b = 1
mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)
Bài 1: Cho x + y = -3 và x.y = -28. Tính giá trị các biểu thức sau theo m,n.
a) x^2 + y^2 b) x^3 + y^3 c) x^4 + y^4
Bài 2: Chứng minh rằng:
a) a^2 + b^2 + c^2 +d^2 >_ ab+ac+ad
b) a^2 + 4b^2 +4c^2 >_ 4ab - 4ac + 8bc
Bài 3: Chứng minh rằng:
Nếu x + y + z = 0 thì x^3 + y^3 + z^ 3 = 3xyz
Bài 4: Chứng minh : a^2 + 4b^2 + 4c^2 >_ 4ab - 4ac + 8bc
( Viết về dạng bình phương của một tổng)
GIÚP MÌNH VỚI Ạ!!!!!!!!!!!!
Bài 1 :
a) \(x^2+y^2\)
\(\Leftrightarrow x^2+2xy+y^2-2xy\)
\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)
b) \(x^3+y^3\)
\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)
\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)
c) \(x^4+y^4\)
\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)
Bài 3:
Có: \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)
=> \(x^3+y^3+z^3=\left(-z\right)^3-3xy.-z+z^3\)
=> \(x^3+y^3+z^3=-z^3+z^3+3xyz=3xyz\)
=> TA CÓ ĐPCM.
VẬY \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)
Bài 2 :
a) Giả sử \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)
\(\Leftrightarrow a^2+b^2+c^2+d^2-ab-ac-ad\ge0\)
\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2-4ab-4ac-4ad\ge0\)
\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d^2\right)\ge0\)( luôn đúng )
\(\RightarrowĐPCM\)
b) Sửa đề : \(a^2+4b^2+4c^2\ge2ab-2ac+4bc\)
Ta có : \(\left(a+2c\right)^2\ge0\Leftrightarrow a^2+4c^2\ge-4ac\left(1\right)\)
Áp dụng BĐT Cô - si ta có :
\(\hept{\begin{cases}a^2+4b^2\ge4ab\left(2\right)\\4b^2+4c^2\ge8bc\left(3\right)\end{cases}}\)
(1) + (2) + (3)
\(\Leftrightarrow2a^2+8b^2+8c^2\ge4ab-4ac+8bc\)
\(\Leftrightarrow2\left(a^2+4b^2+4c^2\right)\ge4\left(ab-ac+2bc\right)\)
\(\Leftrightarrow a^2+4b^2+4c^2\ge2ab-2ac+4bc\)
1 ) Tìm các số x , y , z biết :
a ) x / -2 = y / 3 = z / -5 và x - y + z = 20
b ) x / 10 = y / 6 = z / 21 và 5x + y - 2z = 28
c ) x / 3 = y / 4 ; 5y = 3z và 2x - 3y + z = 6
d ) x / 2 = y / 3 = z / 5 và x , y , z = 810
2 ) Cho a / b = b / c = c / a
Chứng minh rằng : a = b = c
3 ) Cho x = a / b + c = b / c + a = c / a + b với a + b + c khác 0 . Tính x ?
B2:
a/b=b/c=c/a=a+b+c/b+c+a=1
suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)
...................................................................................................
với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c
Bạn TV Hoàng Linh giải câu 3 với câu 1 giùm mình nha
Làm giúp mk nha
1.2x=3y;5y=7z;3x+5y-7z=30
A) Tìm a,b,c biết: 3a=2b;4b=5c và -a-b+c=-52
B) tìm x,y,z biết !X-1/2!+!Y+2/3!+!X^2+XZ!=0
Ai nhanh mk tich mình cần gấp thanks
a) \(3a=2b\)\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}\) hay \(\frac{a}{10}=\frac{b}{15}\)
\(4b=5c\)\(\Rightarrow\)\(\frac{b}{5}=\frac{c}{4}\) hay \(\frac{b}{15}=\frac{c}{12}\)
suy ra: \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)
đến đây bạn áp dụng tính chất dãy tỉ số bằng nhau nha
b) \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)
Nhận thấy: \(\left|x-1\right|\ge0\) \(\left|y+\frac{2}{3}\right|\ge0;\) \(\left|x^2+xz\right|\ge0\)
suy ra: \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|\ge0\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\hept{\begin{cases}x-1=0\\y+\frac{2}{3}=0\\x^2+xz=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{2}{3}\\z=-1\end{cases}}\)
Vậy....
1,Cho x,y>0 và xy=2018. Tìm Pmin= 2/x + 1009/y - 2018/(2018x+4y)
2,Cho x,y>0 và x+y=1. Tìm Min B=1/x3+y3 +1/xy
3,Nếu x,y thuộc N* và 2x+3y=53. Tìm max của căn(xy+4)
4,Tìm min P=x^2 +xy +y^2 -3x -3y +2019
5,Cho 0<x<2. Tìm min A= 9x/2-x +2/x
6,Tìm min D= x/y+z + y+z/x + y/x+z + z+x/y + z/x+y + x+y/z
Làm ơn giải giùm mình với, ngay mai kiểm tra rồi.
Cảm ơn nhiều :)))))
cho x + y+z=0. cmr 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)
cho a+b+c=0;a^2+b^2+c^2=0;a^3+b^3+c^3=0. tính a+b^2+c^3
1. Cho a,b,c,d dương thỏa mãn; a4 +b4 +c4 +d4 =4abcd
Tính M= a2006 +b2007 -c2006 -d2007
2. Cho a,b thỏa mãn a3 +2b2 -4b+3=0 và a2 +a2b2 -2b=0
Tính P=a2 +b2
3.Cho a2 +a +1=0. Tính
P= a2008 + (1/a2008)
4.Cho các số x,y,z thỏa mãn điều kiện: x+y+z=1 và x3 +y3 +z3 =1.
Tính A= x2007 +y2007 +z2007.
5.cho a,b,c là 3 số đôi một khác nhau thỏa mãn:
a+(1/b)= b+(1/c)= c+(1/a)
Tính P=abc
Cho a\LARGE \!Nhấp chuột và kéo để di chuyển/b = c/d Chứng minh 2a+ 5b / 3a -4b = 2c + 5d / 3c - 4d 2 y+x+1 / x = x+z+2 / y = x+y-3 /z = 1 / x+y+z tính x,y,z
( với abc # 0 và các mẫu đều khác 0)