Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Song Phương
Xem chi tiết
Xyz OLM
3 tháng 2 2023 lúc 21:37

1) Áp dụng bđt Cauchy cho 3 số dương ta có

 \(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{x}+x^3\ge4\sqrt[4]{\dfrac{1}{x}.\dfrac{1}{x}.\dfrac{1}{x}.x^3}=4\) (1)

\(\dfrac{3}{y^2}+y^2\ge2\sqrt{\dfrac{3}{y^2}.y^2}=2\sqrt{3}\) (2)

\(\dfrac{3}{z^3}+z=\dfrac{3}{z^3}+\dfrac{z}{3}+\dfrac{z}{3}+\dfrac{z}{3}\ge4\sqrt[4]{\dfrac{3}{z^3}.\dfrac{z}{3}.\dfrac{z}{3}.\dfrac{z}{3}}=4\sqrt{3}\) (3)

Cộng (1);(2);(3) theo vế ta được

\(\left(\dfrac{3}{x}+\dfrac{3}{y^2}+\dfrac{3}{z^3}\right)+\left(x^3+y^2+z\right)\ge4+2\sqrt{3}+4\sqrt{3}\)

\(\Leftrightarrow3\left(\dfrac{1}{x}+\dfrac{1}{y^2}+\dfrac{1}{z^3}\right)\ge3+4\sqrt{3}\)

\(\Leftrightarrow P\ge\dfrac{3+4\sqrt{3}}{3}\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{x}=x^3\\\dfrac{3}{y^2}=y^2\\\dfrac{3}{z^3}=\dfrac{z}{3}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\sqrt[4]{3}\\z=\sqrt{3}\end{matrix}\right.\) (thỏa mãn giả thiết ban đầu)

 

Xyz OLM
3 tháng 2 2023 lúc 22:03

2) Ta có \(4\sqrt{ab}=2.\sqrt{a}.2\sqrt{b}\le a+4b\)

Dấu"=" khi a = 4b

nên \(\dfrac{8}{7a+4b+4\sqrt{ab}}\ge\dfrac{8}{7a+4b+a+4b}=\dfrac{1}{a+b}\)

Khi đó \(P\ge\dfrac{1}{a+b}-\dfrac{1}{\sqrt{a+b}}+\sqrt{a+b}\)

Đặt \(\sqrt{a+b}=t>0\) ta được

\(P\ge\dfrac{1}{t^2}-\dfrac{1}{t}+t=\left(\dfrac{1}{t^2}-\dfrac{2}{t}+1\right)+\dfrac{1}{t}+t-1\)

\(=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\)

Có \(\dfrac{1}{t}+t\ge2\sqrt{\dfrac{1}{t}.t}=2\) (BĐT Cauchy cho 2 số dương)

nên \(P=\left(\dfrac{1}{t}-1\right)^2+\dfrac{1}{t}+t-1\ge\left(\dfrac{1}{t}-1\right)^2+1\ge1\)

Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}\dfrac{1}{t}-1=0\\t=\dfrac{1}{t}\end{matrix}\right.\Leftrightarrow t=1\)(tm)

khi đó a + b = 1

mà a = 4b nên \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

Vậy MinP = 1 khi \(a=\dfrac{4}{5};b=\dfrac{1}{5}\)

 

Đào Trọng Uy Vũ
Xem chi tiết
Nguyễn Việt Hoàng
15 tháng 8 2020 lúc 9:51

Bài 1 : 

a) \(x^2+y^2\)

\(\Leftrightarrow x^2+2xy+y^2-2xy\)

\(\Leftrightarrow\left(x+y\right)^2-2xy=\left(-3\right)^2-2.\left(-28\right)=65\)

b) \(x^3+y^3\)

\(\Leftrightarrow\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(\Leftrightarrow\left(x+y\right)\left(x^2+2xy+y^2-3xy\right)\)

\(\Leftrightarrow\left(x+y\right)\left[\left(x+y\right)^2-3xy\right]=\left(-3\right)\left[\left(-3\right)^2-3.\left(-28\right)\right]=-279\)

c) \(x^4+y^4\)

\(\Leftrightarrow\left(x+y\right)^4-4x^3y-4xy^3-6x^2y^2=\left(-3\right)^4-4\left(-28\right).65-6\left(-28\right)^2=2657\)

Khách vãng lai đã xóa
FL.Hermit
15 tháng 8 2020 lúc 10:00

Bài 3:

Có:    \(x^3+y^3+z^3=\left(x+y\right)^3-3xy\left(x+y\right)+z^3\)

=>     \(x^3+y^3+z^3=\left(-z\right)^3-3xy.-z+z^3\)

=>     \(x^3+y^3+z^3=-z^3+z^3+3xyz=3xyz\)

=> TA CÓ ĐPCM.

VẬY      \(x+y+z=0\Rightarrow x^3+y^3+z^3=3xyz\)

Khách vãng lai đã xóa
Nguyễn Việt Hoàng
15 tháng 8 2020 lúc 10:03

Bài 2 :

a) Giả sử  \(a^2+b^2+c^2+d^2\ge ab+ac+ad\)

\(\Leftrightarrow a^2+b^2+c^2+d^2-ab-ac-ad\ge0\)

\(\Leftrightarrow4a^2+4b^2+4c^2+4d^2-4ab-4ac-4ad\ge0\)

\(\Leftrightarrow\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d^2\right)\ge0\)( luôn đúng )

\(\RightarrowĐPCM\)

b) Sửa đề : \(a^2+4b^2+4c^2\ge2ab-2ac+4bc\)

Ta có : \(\left(a+2c\right)^2\ge0\Leftrightarrow a^2+4c^2\ge-4ac\left(1\right)\)

Áp dụng BĐT Cô - si ta có :

\(\hept{\begin{cases}a^2+4b^2\ge4ab\left(2\right)\\4b^2+4c^2\ge8bc\left(3\right)\end{cases}}\)

(1) + (2) + (3) 

\(\Leftrightarrow2a^2+8b^2+8c^2\ge4ab-4ac+8bc\)

\(\Leftrightarrow2\left(a^2+4b^2+4c^2\right)\ge4\left(ab-ac+2bc\right)\)

\(\Leftrightarrow a^2+4b^2+4c^2\ge2ab-2ac+4bc\)

Khách vãng lai đã xóa
Võ Mỹ Hảo
Xem chi tiết
TV Hoàng Linh
27 tháng 7 2018 lúc 20:06

B2:

a/b=b/c=c/a=a+b+c/b+c+a=1

suy ra a/b=1 suy ra a=b=1(vì hai số bằng nhau mới có tích là 1)

...................................................................................................

với b/c và c/a cũng tương tự như trên và sẽ suy ra a=b=c

Võ Mỹ Hảo
28 tháng 7 2018 lúc 9:33

Bạn TV Hoàng Linh giải câu 3 với câu 1 giùm mình nha

TV Hoàng Linh
12 tháng 8 2018 lúc 19:44

Làm giúp mk nha 

1.2x=3y;5y=7z;3x+5y-7z=30

Vũ Đức Hưng
Xem chi tiết
Không Tên
22 tháng 7 2018 lúc 21:03

a)  \(3a=2b\)\(\Rightarrow\)\(\frac{a}{2}=\frac{b}{3}\) hay  \(\frac{a}{10}=\frac{b}{15}\)

\(4b=5c\)\(\Rightarrow\)\(\frac{b}{5}=\frac{c}{4}\)  hay  \(\frac{b}{15}=\frac{c}{12}\)

suy ra:   \(\frac{a}{10}=\frac{b}{15}=\frac{c}{12}\)

đến đây bạn áp dụng tính chất dãy tỉ số bằng nhau nha

b)  \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|=0\)

Nhận thấy:   \(\left|x-1\right|\ge0\)    \(\left|y+\frac{2}{3}\right|\ge0;\) \(\left|x^2+xz\right|\ge0\)

suy ra:   \(\left|x-1\right|+\left|y+\frac{2}{3}\right|+\left|x^2+xz\right|\ge0\)

Dấu "=" xảy ra  \(\Leftrightarrow\)\(\hept{\begin{cases}x-1=0\\y+\frac{2}{3}=0\\x^2+xz=0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x=1\\y=-\frac{2}{3}\\z=-1\end{cases}}\)

Vậy....

Bùi Đức Thắng
Xem chi tiết
vaqddddd
Xem chi tiết
vân phạm
Xem chi tiết
khổng Tuấn Minh
Xem chi tiết
Aoidễthương
Xem chi tiết