Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Mai Hương
Xem chi tiết
Nguyễn Linh Chi
4 tháng 6 2020 lúc 10:27

\(\left(6x+7\right)^2.\left(3x+4\right).\left(x+1\right)=6\)

<=> \(\left(36x^2+84x+49\right)\left(3x^2+7x+4\right)=6\)

Đặt: \(3x^2+7x+4=t\)

=> \(36x^2+84x+49=12\left(3x^2+7x+4\right)+1=12t+1\)

Ta có phương trình ẩn t: 

\(t\left(12t+1\right)=6\)

<=> \(12t^2+t-6=0\)

<=> \(12t^2-8t+9t-6=0\)

<=> \(4t\left(3t-2\right)+3\left(3t-2\right)=0\)

<=> \(\left(4t+3\right)\left(3t-2\right)=0\)

<=> \(\orbr{\begin{cases}t=-\frac{3}{4}\\t=\frac{2}{3}\end{cases}}\)

Với \(t=-\frac{3}{4}\) ta có phương trình: \(3x^2+7x+4=-\frac{3}{4}\)

<=> \(x^2+\frac{7}{3}x+\frac{19}{12}=0\)

<=> \(x^2+2.x.\frac{7}{6}+\frac{49}{36}=-\frac{2}{9}\)

<=> \(\left(x+\frac{7}{6}\right)^2=-\frac{2}{9}\)phương trình vô nghiệm

+) Với \(t=\frac{2}{3}\)ta có: \(3x^2+7x+4=\frac{2}{3}\)

<=> \(x^2+\frac{7}{3}x+\frac{10}{9}=0\)

<=> \(x^2+2.x.\frac{7}{6}+\frac{49}{36}=\frac{1}{4}\)

<=> \(\left(x+\frac{7}{6}\right)^2=\frac{1}{4}\)

<=> \(x=-\frac{2}{3}\)

hoặc \(x=-\frac{5}{3}\)

Kết luận:...

Khách vãng lai đã xóa
๖²⁴ʱ๖ۣۜTɦủү❄吻༉
4 tháng 6 2020 lúc 15:25

Cách khác cô Chi nhé ! , nhưng cách này tới đấy xin cùy.

\(\left(6x+7\right)^2\left(3x+4\right)\left(x+1\right)=6\)

\(108x^4+504x^3+879x^2+679x+196=6\)

\(108x^4+504x^3+879x^2+679x+190=0\)

Khách vãng lai đã xóa
nguyen minh khoi
Xem chi tiết
Vũ thị Mai Hường
Xem chi tiết
Lê Nguyễn Ngân Nhi
Xem chi tiết
Nguyễn Thị Bình Yên
Xem chi tiết
huyền trang bùi thị
23 tháng 1 2018 lúc 18:05

pt nào cho thì mới biết chứ bạn

Phạm Hải Yến
Xem chi tiết
nguyen minh khoi
Xem chi tiết
Lê Thị Thanh Tâm
Xem chi tiết
Hani Lê Trần 2
Xem chi tiết
Trà My
18 tháng 6 2017 lúc 16:47

a)\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)

Đặt \(t=x^2+3x\) thì biểu thức có dạng \(t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2=\left(x^2+3x+1\right)^2\)

b)\(\left(x^2-x+2\right)^2+4x^2-4x-4=\left(x^2-x+2\right)^2+4\left(x^2-x-1\right)\)

Đặt \(k=x^2-x+2\) thì biểu thức có dạng

k2+4(k-3)=k2+4k-12=k2-2k+6k-12=k(k-2)+6(k-2)=(k-2)(k+6)=(x2-x)(x2-x+8)=(x-1)x(x2-x+8)

c)làm tương tự câu a