cho tam giac ABC co AB = AC . M la trung diem BC tren tia doi MA lay diem D sao cho AM = MD
a cm tam giac abm= tam giac dcm
b ab song song dc
c am vuong goc bc
d tim dieu kien cua tam giac abc de goc adc = 45 do
Cho tam giac ABC , AB=AC.M la trung diem cua BC .Tren tia doi tiaMA lay diem D sao cho AM=MD .
a chung minh tam giac ABM=tam giacDCM.
b chung minh AB song song BC.
c chung minh AM vuong goc BC
d tim dieu kien cua tam giac ABC de goc ADC=36do
cho tam giac ABC co AB=AC goi M trung diem cua BC va tren tia doi MA lay diem D sao cho MD=MA
a/ Chung minh AM vuong goc BC
b/ AB//DC
c/ Tim dieu kien tam giac ABC de GOC ADC =30 ? de BD vong goc CD
cho tam giac ABC co AB=AC ,goi M la trung diem cua canh BC
chung minh tam giac ABM=tam giac ACM
chung minh AM vuong goc voi BC
tren tia doi cua tia MA lay diem D sao cho MD=MA
chung minh AB song song voi CD
*Xét ΔABM và ΔACM có:
\(\left\{{}\begin{matrix}AB=AC\left(gt\right)\\BM=MC\left(M.l\text{à}.trung.\text{đ}i\text{ểm}.c\text{ủa}.BC\right)\\AM.c\text{ạnh}.chung\end{matrix}\right.\)
⇒ ΔABM = ΔACM (c - c - c)
*Vì ΔABM = ΔACM (cmt)
⇒ \(\widehat{AMB}=\widehat{AMC}\) (hai góc tương ứng) Ta có: \(\widehat{AMB}+\widehat{AMC}=180^o\) (kề bù) ⇒ \(\widehat{AMB}=\widehat{AMC}\) = \(\dfrac{180^o}{2}=90^o\) ⇒ AM ⊥ BC *Xét ΔAMB và ΔDMC có: \(\left\{{}\begin{matrix}AM=MD\left(gt\right)\\\widehat{AMB}=\widehat{DMC}\left(\text{đ}\text{ối}.\text{đ}\text{ỉnh}\right)\\BM=MC\left(gt\right)\end{matrix}\right.\) ⇒ ΔAMB = ΔDMC (c - g - c) ⇒ \(\widehat{ABM}=\widehat{DCM}\) (hai góc tương ứng) Mà hai góc này ở vị trí so le trong ⇒ AB // CDcho tam giac ABC co AB=AC ;M la trung diemcua BC .Tren tia doi cua tia MA lay D sao cho AM=MD
CMR; a,tam giac ABM =DCM
b,AB song song voi DC
c,AM vuong goc voi BC
cho tam giac abc co ac<abm la trung diem cua bc tren tia am lay diem d sao cho ma=md chung minh:a,tam giac amb=tam giac cmd b,ve ah vuong goc voi bc dk vuong goc voi bc cm ha=dk c,cm ak song song voi dh
cho tam giac ABC vuong tai A. Diem M la trung diem cua canh BC. Tren tia doi cua tia MA lay diem D sao cho MA=MD. Chung minh rang a) tam giac AMC=tam giac DMB, b) AC=BD, c) AB vuong goc voi BD, d) AM=1/2BC. Cac ban co giup minh nhanh nhat co the nha
cho tam giac ABC. Goi M la trung diem BC va AM la tia phan giac cua goc A. Ve MI vuong goc AB, MH vuong goc AC. Chung minh rang:
a, MI = MH
b, Tam giac ABC can
c, Cho AB = 17 cm, AM = 15 cm. Tinh BC
d, Tren tia doi cua tia BC lay diem D, tren tia doi cua tia CB lay diem E sao cho BD = CE. Chung minh: tam giac AED can
Cho tam giac ABC do AB=AC. Goi M la trung diem cua canhBC
a) Chung minh tam giac ABM=tam giac ACM va AM vuong goc BC
b) Goi D la trung diem cua canh AC. Tren tia BD lay diem E sao cho DB=DE Chung minh tam giac BDA=tam giac EDC vaAB//CE
c) Tren tia doi cua MA lay diem F sao cho M la trung diem AF
e) Chung minh :E, C, F thang hang
Ta có hình vẽ:
a/ Xét tam giác ABM và tam giác ACM có:
AB = AC (GT)
AM: cạnh chung
BM = MC (GT)
Vậy tam giác ABM = tam giác ACM (c.c.c)
Ta có: tam giác ABM = tam giác ACM
=> \(\widehat{AMB}\)=\(\widehat{AMC}\) (2 góc tương ứng)
mà \(\widehat{AMB}\)+\(\widehat{AMC}\)=1800 (kề bù)
=> \(\widehat{AMB}\)=\(\widehat{AMC}\)=900
=> AM \(\perp\)BC (đpcm)
b/ Xét tam giác BDA và tam giác EDC có:
BD = DE (GT)
\(\widehat{BDA}\)=\(\widehat{EDC}\) (đối đỉnh)
AD = DC (GT)
Vậy tam giác BDA = tam giác EDC (c.g.c)
=> \(\widehat{BAC}\)=\(\widehat{DCE}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CE (đpcm)
c/ Đã vẽ và kí hiệu trên hình
d/ Xét tam giác AMB và tam giác CMF có:
AM = MF (GT)
\(\widehat{AMB}\)=\(\widehat{CMF}\) (đối đỉnh)
BM = MC (GT)
Vậy tam giác AMB = tam giác CMF (c.g.c)
=> \(\widehat{BAM}\)=\(\widehat{MFC}\) (2 góc tương ứng)
Mà 2 góc này đang ở vị trí so le trong
=> AB // CF
Ta có: AB // CE (1)
Ta có: AB // CF (2)
Từ (1),(2) => EC trùng CF hay E,C,F thẳng hàng
Cho tam giac ABC co AB=AC, M la trung diem cua BC, tren canh AB lay diem D. Chung minh : a) AM vuong goc voi BC, b) Tren ta doi cua tia MD=ME. Chung minh CB la tia phan giac cua goc ACE