cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\left(a;b;c;d\ne0\right)\)
\(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}=?\)
tinhs A
Cho \(\frac{a+2c}{b+2d}=\frac{2a+c}{2b+d}\) .
CMR : \(\frac{a}{b}=\frac{a+c}{b+d};\frac{2a-c}{2b-d}=\frac{a-2c}{b-2d};\frac{a+2b}{a-b}=\frac{c+2d}{c-d}\)
Cho:\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)
Tính: P\(\frac{2a-b}{2c-d}+\frac{2b-c}{2d-a}+\frac{2c-d}{2a-b}+\frac{2d-a}{2b-c}\)
Giúp với ai nhanh mình tick cho.
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
=> a = b = c = d
=> \(D=\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}+\frac{2a-a}{2a-a}\)
D = 1 + 1 + 1 + 1 = 4
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\)\(\left(a+b+c+d\ne0\right)\)Tìm M = \(\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\)
Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) (đề bài)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}=\frac{a+b+c+d}{b+c+d+a}=1\)
\(\Rightarrow\begin{cases}\frac{a}{b}=1\\\frac{b}{c}=1\\\frac{c}{d}=1\\\frac{d}{a}=1\end{cases}\Rightarrow\begin{cases}a=b\\b=c\\c=d\\d=a\end{cases}\)
\(\Rightarrow a=b=c=d\)
Thay \(b=a\) ; \(c=a\) ; \(d=a\) vào biểu thức \(M=\frac{2a-b}{c+d}=\frac{2b-c}{d+a}=\frac{2c-d}{a+b}=\frac{2d-a}{b+c}\) ta có :
\(M=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}=\frac{2a-a}{a+a}\)
\(M=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1a}{2a}=\frac{1}{2}\)
Vậy \(M=\frac{1}{2}\)
Cho:\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\)(a,b,c,d>0)
Cho:\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\left(a,b,c,d>0\right)tinh:\frac{2011a-2010b}{c+d}=\frac{2011b-2010a}{c+d}=\frac{2011c+2011d}{a+b}=\frac{2011d-2010a}{c+dc=d}\)
Cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\left(a,b,c,d>0\right)\)
Tính \(A=\frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}=\frac{2011d-2010a}{b+c}\)
\(\frac{a}{2b}\)=\(\frac{b}{2c}\) =\(\frac{c}{2d}\) =\(\frac{d}{2a}\)=\(\frac{a+b+c+d}{2a+2b+2c+2d}\)=\(\frac{a+b+c+d}{2\left(a+b+c+d\right)}\)=\(\frac{1}{2}\)
quên rùi............................
đáp số =2
cho \(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\left(a,b,c,d\ne0\right)\)
Tính \(A=\frac{2011a-2010b}{c+d}+\frac{2011b+2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}\)
Áp dụng TC DTSBN ta có :
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}=\frac{a+b+c+d}{2b+2c+2d+2a}=\frac{a+b+c+d}{2\left(a+b+c+d\right)}=\frac{1}{2}\)
\(\Rightarrow\frac{a}{2b}=\frac{1}{2}\Rightarrow a=\frac{1}{2}.2b\Rightarrow a=b\) (1)
\(\Rightarrow\frac{b}{2c}=\frac{1}{2}\Rightarrow b=\frac{1}{2}.2c\Rightarrow b=c\) (2)
\(\Rightarrow\frac{c}{2a}=\frac{1}{2}\Rightarrow c=\frac{1}{2}.2a\Rightarrow c=a\) (3)
\(\Rightarrow\frac{d}{2a}=\frac{1}{2}\Rightarrow d=\frac{1}{2}.2a\Rightarrow d=a\) (4)
Từ (1);(2);(3):(4) \(\Rightarrow a=b=c=d\) .Thay vào A ta được :
\(A=\frac{2011a-2010a}{a+a}+\frac{2011a+2010a}{a+a}+\frac{2011a-2010a}{a+a}+\frac{2011a-2010a}{a+a}\)
\(=\frac{a}{2a}+\frac{4021a}{2a}+\frac{a}{2a}+\frac{a}{2a}=\frac{a+4021a+a+a}{2a}=\frac{4024a}{2a}=\frac{4024}{2}=2012\)
Vậy \(A=2012\)
\(Cho:\frac{a}{2b}+\frac{b}{2c}+\frac{c}{2d}+\frac{d}{2a}\)\(\left(a,b,c,d>0\right)\)Tính:\(\frac{2019a-2018b}{c+d}+\frac{2019b-2018c}{a+d}+\frac{2019c-2018d}{a+b}+\frac{2019d-2018a}{c+b}\)
\(\frac{a}{2b}=\frac{b}{2c}=\frac{c}{2d}=\frac{d}{2a}\left(a,b,c,d>0\right)\\ \frac{2011a-2010b}{c+d}+\frac{2011b-2010c}{a+d}+\frac{2011c-2010d}{a+b}+\frac{2011d-2010a}{b+c}=?\\ aigiảigiúpmìnhvới\\ \)
\frac{a}{1+b^{2}c}+\frac{b}{1+c^{2}d}+\frac{c}{1+d^{2}a}+\frac{d}{1+a^{2}b}\geq 2$
Ta có $\sum \frac{a}{1+b^2c}=\sum \frac{a^2}{a+ab^2c}$
Áp dụng Cauchy-Schwarzt ta có
$\sum \frac{a}{1+b^2c}=\sum \frac{a^2}{a+ab^2c}\geq \frac{(a+b+c+d)^2}{a+b+c+d+ab^2c+bc^2d+cd^2a+da^2b}=\frac{16}{4+ab^2c+bc^2d+cd^2a+da^2b}$
Do đó ta chỉ cần chứng minh $ab^2c+bc^2d+cd^2a+da^2b\leq 4$ là suy ra $\sum \frac{a}{1+b^2c}\geq \frac{16}{4+4}=2$
Bất đẳng thức đã cho tương đương $ab.bc+bc.cd+cd.da+da.ab\leq 4$ với $a+b+c+d=4$
Chuyển $\left ( ab,bc,cd,da \right )\Rightarrow (x,y,z,t)$
Ta có $x+y+z+t=ab+bc+cd+ad \leq \frac{(a+b+c+d)^2}{4}=4$
Lại có $ab^2c+bc^2d+cd^2a+da^2b=xy+yz+zt+tx \leq \frac{(x+y+z+t)^2}{4} \leq \frac{4^2}{4}=4$
Vậy ta có đpcm
Dấu = xảy ra khi $a=b=c=d=1$
doc lam sao