Tìm x
6x(x-2)=x-2
Phân tích đa thức thành nhân tử
1. x^7+x^2+1
2. X^7+x^5+1
3. X^4+x6x^3+7x^2-6x+1
Tìm x sao cho 3x^2-x6x=0 mng chỉ tớ cách giải vs
Ta có : 3x2 - 6x = 0
=> 3x(x - 2) = 0
\(\Leftrightarrow\orbr{\begin{cases}3x=0\\x-2=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)
cho \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}\)
a, Tìm đkxđ của A
b, Tính A khi x=\(3+2\sqrt{2}\)
c, Tìm x khi A=\(\dfrac{1}{2}\)
d,Tìm x khi A>2
e, Tìm \(x\in Z\) để A nguyên
a) \(đk:\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne4\end{matrix}\right.\)
b) \(x=3+2\sqrt{2}\Rightarrow\sqrt{x}=\sqrt{3+2\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}=\sqrt{2}+1\)
\(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{2}+1\right)-1}{\sqrt{2}+1-2}=\dfrac{2\sqrt{2}+1}{\sqrt{2}-1}\)
c) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{1}{2}\)
\(\Leftrightarrow4\sqrt{x}-2=\sqrt{x}-2\Leftrightarrow3\sqrt{x}=0\Leftrightarrow x=0\left(tm\right)\)
d) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}>2\)
\(\Leftrightarrow2\sqrt{x}-1>2\sqrt{x}-4\Leftrightarrow-1>-4\left(đúng\forall x\right)\)
e) \(A=\dfrac{2\sqrt{x}-1}{\sqrt{x}-2}=\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}-2}+\dfrac{3}{\sqrt{x}-2}=2+\dfrac{3}{\sqrt{x}-2}\in Z\)
\(\Rightarrow\sqrt{x}-2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
Do \(x\ge0\)
\(\Rightarrow x\in\left\{1;9;25\right\}\)
Bài 1: Tìm x, biết 5 3.5 5 .2 2 3 2 2 x
Bài 2: Tìm x, biết: (7x-11)3 = 25.52 + 200
Bài 3: Tìm x biết : 2 15 2 15 x x 5 3
Bài 4: Tìm số tự nhiên x biết 8.6 + 288 : (x - 3)2 = 50
Bài 5: Tìm x: 22x – 1 + 6.28 = 14.28
Bài 6: Tìm số tự nhiên x biết:
a) 23x + 52x = 2(52 + 23) – 33 b) 260 : (x + 4) = 5(23 + 5) – 3(32 + 22)
c) (3x – 4)10 – 3 = 1021 d) (x2 + 4) (x + 2)
Bài 7: Tìm số tự nhiên x, biết: 5 .5 .5 1000...0: 2 x x x 1 2 18
Bài 8: Tìm số tự nhiên x biết: 2x 2x1 2x2 ... 2x2015 22019 8
Bài 9: Tìm x N biết :
a) 13 + 23 + 33 + ...+ 103 = ( x +1)2; b) 1 + 3 + 5 + ...+ 99 = (x -2)2
Bài 10: Tìm các số tự nhiên x, y sao cho (2x + 1)(y – 5) = 12
DẠNG 3: SO SÁNH BIỂU THỨC, LUỸ THỪA
Bài 11: So sánh hai tích sau mà không tính cụ thể giá trị của chúng:
a) A 123.123và B 124.122; b) A 987.984và B 986.985.
c) C = 345.350 và D = 348.353 d) P = 75.36 + 23 và Q = 36.77 – 64
e) E = 35.56 + 17 và F = 34.57 – 14
Bài 12. Không tính kết quả của biểu thức, hãy so sánh
a) A 2019.2021 và B 20202 b)
2021
2022
10 1
10 1
M
và
2022
2023
10 1
10 1
N
.
Bài 13: Cho A = 1 + 2012 + 20122 + 20123 + 20124 + … + 201271 + 201272 và
B = 201273 - 1. So sánh A và B.
Bài 14: Cho D 1 2 ... 22021. Chứng minh D 22022
Bài 15: Cho E = 6 +62 +...+ 62020. So sánh 5E + 6 với 361011
Bài 16: Cho S = 2.1+2.3 +2.32+2.32020. So sánh S + 2 với 4.91010
Bài 17: Cho S = 5.1+5.4 +5.42+5.42021 . So sánh 3S + 5 với 80. 16 1010
* Các bài toán về so sánh luỹ thừa
Loại 1: Biến đổi về cùng cơ số hoặc số mũ
Bài 1: Hãy so sánh:
a. 1619 và 825 b. 2711 và 818 . c) 1619 và 825 d) 6255 và 1257 .
Bài 2: Hãy so sánh:
a. 1287 và 424 b. 536 và 1124 c. 3260 và 8150 d. 3500 và 7300 .
PBT CLB Toán 6 Cô Yến -TNT
Bài 3: Hãy so sánh:
a) 3210 và 2350 b) 231 và 321 c) 430 và 3 24 . . 10
Bài 4: Hãy so sánh:
a) 32n và 23n * n N b) 5300 và 3500 .
Bài 5: Hãy so sánh:
a) 32 2 n n và 9n12 b) 256n và 16n5 (với n N )
Loại 2: Đưa về một tích trong đó có thừa số giống nhau
Bài 1: Hãy so sánh:
a) 202303 và 303202 . b) 2115 và 27 49 5 8 . . c)3.275 và 2435 .
Bài 2: Hãy so sánh:
a) 2015 2015 2015 2014 và 2015 2015 2016 2015 . b) 2015 2015 10 9 và 201610.
Bài 3: Hãy so sánh:
a) A 72 72 45 44 và B 72 72 44 43 . b) 3775 và 7150 .
Bài 4: Hãy so sánh:
a) 523 và 6 5 . 22 b) 7 2 . 13 và 216 c) 1512 và 81 125 3 5 . .
Bài 5: Hãy so sánh 9920 và 999910 .
Loại 3: So sánh thông qua một lũy thừa trung gian
Bài 1: Hãy so sánh 2 3 4 30 30 30 và 3 24 . 10 .
Bài 2: Hãy so sánh:
a) 2225 và 3151 b) 19920 và 200315 c) 291 và 536.
Bài 3: Hãy so sánh:
a) 9920 và 9 11 10 30 . b) 96142 và 100 23 . 93 .
Bài 4: Hãy so sánh:
a) 10750 và 7375 b) 3339 và 1121.
Bài 5: Hãy so sánh:
a) A 123456789 và B 567891234 . b) 111979 và 371320 .
Loại 4: So sánh thông qua hai lũy thừa trung gian
Bài 1: Hãy so sánh
a) 1720 và 3115 b) 19920 và 10024 c) 3111 và 1714 .
Bài 2: Hãy so sánh
a) 111979 và 371321 b) 10750 và 5175 c) 3201 và 6119 .
Bài 3: Chứng minh rằng: a) 2 5 1995 863 . b) 5 2 5 27 63 28 .
cho A=\(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a, Tìm điều kiện xác định và rút gọn A
b, Tìm A khi x=\(4-2\sqrt{3}\)
c, Tìm x để A=\(\dfrac{1}{2}\)
d, Tìm x để A≥\(\dfrac{1}{2}\)
e, Chứng minh A>-5
g, Tìm xϵZ để AϵN
h, Tìm giá trị nhỏ nhất của A
Chứng minh các đẳng thức sau: x 6 x + 2 x 3 + 6 x : 6 x = 2 1 3 v ớ i x > 0
Chứng minh các đẳng thức sau: x 6 x + 2 x 3 + 6 x : 6 x = 2 1 3 v ớ i x > 0
cho biểu thức C=\(\dfrac{x^3}{x^2-4}-\dfrac{x}{x-2}-\dfrac{2}{x+2}\)
a, Tìm giá trị của x để giá trị của biểu thức C được xác định
b, Tìm x để C=0
c, Tìm giá trị nguyên của x để C nhận giá trị dương
a) C được xác định <=> x khác +- 2
b) Ta có : \(C=\dfrac{x^3}{\left(x-2\right)\left(x+2\right)}-\dfrac{x\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\dfrac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{x^3-x^2-2x-2x+4}{\left(x-2\right)\left(x+2\right)}=\dfrac{x^2\left(x-1\right)-4\left(x-1\right)}{\left(x-2\right)\left(x+2\right)}=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}=x-1\)
Để C = 0 thì x - 1 = 0 <=> x = 1 (tm)
c) Để C nhận giá trị dương thì x - 1 > 0 <=> x > 1
Kết hợp với ĐK => Với x > 1 và x khác 2 thì C nhận giá trị dương
Tìm min của x^2+x-6
Tìm mã của x-x^2-1
A=x^2+x-6
=x^2+2x.1/2+(1/2)^2-(1/2)^2-6
=(x+1/2)^2-25/4> hoặc bằng -25/4
vậy min A=-25/4 <=> x+1/2=0
<=> x=-1/2
B=x-x^2-1
=-(x^2-x+1)
=-[x^2-2x.1/2+(1/2)^2-(1/2)^2+1]
=-[(x-1/2)^2+3/4]
=-(x-1/2)^2-3/4 < hoặc bằng -3/4
vậy max B=-3/4 <=> -x+1/2=0
<=> x=1/2