Cho a, b, c khác 0. Tính tổng a+b+c biết:
(b+c-3)/a = (a+c-5)/b = (a+b+7)/c = 1/(a+b+c)
A) biết a-b=7 tính :A =a2(a+1) - b2(b-1)+ ab - 3ab(a-b+1)
B) cho 3 số a,b,c khác 0 thoã mãn đẳng thức :a+b-c/c = a+c-b/b = c+b-a/c
tính P = (a+b)(a+c)(b+c)/abc
Biết a + b + c khác 0 và b + c – 3/a = a + c – 5/b = a + b + 7/c = 1/ a + b + c. Khi đó a + b + c bằng bao nhiêu?
Biết a + b + c khác 0 và b + c – 3/a = a + c – 5/b = a + b + 7/c = 1/a +b + c. Khi đó a + b + c bằng bao nhieu?
tôi ko hiểu cách trình bày của bạn
lại đề dõ dàng nha , nhìn nhìn chẳng hiểu gì cả
Ban chuyển thành phân số thoi tại mình k viết thành phân số đc nên phải dùng dấu / , coi v chứ bạn viết ra giấy là hiểu à
Cho A=\(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)(Tổng hai số bất kì trong ba số a,b,c khác 0). Biết a+b+c=7 và \(\dfrac{1}{b+c}+\dfrac{1}{c+a}+\dfrac{1}{a+b}=\dfrac{7}{10}\). Hãy chứng tỏ rằng A>\(1^8_{11}\)
Cho biết a/2-b=c:2/3 và a,b,c khác 0.Tính
Q=2018-(c/a-1/3)5x(a/b-2)5(c/2+b/c)5
Cho 3 số a,b,c khác 0.Với điều kiện (a+b+c) (1/a+1/b+1/c)=1 Tính (a^11+b^11).( b^7+c^7).(a^2015+c^2015)
cho biết a/2 -b=c:2/3 và a,b,c khác 0. tính giá trị biểu thức Q=2018 - (c/a - 1/3)^5 x . (a/2 - 2) ^5 . (3/2 + b/c )^5
Bạn cần viết đề bài bằng công thức toán để được hỗ trợ tốt hơn (biểu tượng $\sum$ bên trái khung soạn thảo)
Biết a – b = 7 tính : A = a2(a + 1) – b2(b – 1) + ab – 3ab(a – b + 1)
Cho ba số a, b, c khác 0 thỏa nãm đẳng thức : \frac{a+b-c}{c} =\frac{a+c-b}{b} =\frac{c+b-a}{c}
Tính : P = \frac{(a+b)(b+c)(a+c)}{abc}
đề bài sai rồi
Ta cóA=a3+a2-b3+b2+ab-3ab(a-b+1)
=(a3-b3)+(a2+ab+b2)-24ab(do a-b=7)
=(a-b)(a2+ab+b2)+(a2+ab+b2)-24ab
=(a2+ab+b2)(a-b+1)-24ab
mà a-b=7=>A=8a2+8ab+8b2-24ab
=8a2-16ab+8b2
=8(a-b)2=8 . 72=8 . 49=392
1. Cho a,b,c>0 thỏa mãn 1/a+1/b+1/c=3.Tìm GTNN của P=1/a^2+1/b^2+1/c^2
2.Cho a,b,c khác 0 thỏa mãn a+b+c =0 và 1/a+1/b+1/c=7.Tính 1/a^2+1/b^2+1/c^2
3.Cho a<_b<_ c và a+b+c>0.Cm:a/b+b/c+c/a>_ b/a+c/b+a/c
1. Ta có : \(\left(\frac{1}{a}-\frac{1}{b}\right)^2\ge0\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}\ge\frac{2}{ab}\)
Tương tự : \(\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{2}{bc}\); \(\frac{1}{a^2}+\frac{1}{c^2}\ge\frac{2}{ac}\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\). Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=9\)
\(9\le3\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow\)a = b = c = 1
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=7\)\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}+2.\frac{a+b+c}{abc}=49\)
\(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=49\)
Xét hiệu \(A=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}-\frac{b}{c}-\frac{c}{b}-\frac{a}{c}\)
\(\frac{a^2c+b^2a+c^2b-b^2c-c^2a-a^2b}{abc}\)
\(\frac{\left(c-b\right)\left(a-c\right)\left(a-b\right)}{abc}\)
Ta thấy c -b \(\ge\)0 ; a - c \(\le\)0 ; a - b \(\le\)0 nên ( c - b ) ( a - c ) ( a - b )\(\ge\)0
Mà abc > 0 nên A \(\ge\)0 => ....