phương trình mx2 + 2( 2m - 3 )x+m2-4=0 có 2 nghiệm trái dấu khi và chỉ khi
Phương trình m 2 + 1 x 2 - x - 2 m + 3 = 0 có hai nghiệm trái dấu khi và chỉ khi:
A. m > 2 3
B. m < 3 2
C. m > 3 2
D. m > - 3 2
Phương trình ( m 2 + 1 ) x 2 - x - 2 m + 3 = 0 có hai nghiệm trái dấu khi và chỉ khi
A. m > 2 3
B. m < 3 2
C. m > 3 2
D. m > - 3 2
Để phương trình đã cho có 2 nghiệm trái dấu khi ac < 0
Hay (m2+ 1). (- 2m + 3 )< 0
Lại có, m2 + 1 > 0 với mọi m
Suy ra: -2m + 3 < 0 ⇔ m > 3 2
Phương trình x 2 - 2 m + 2 x + m 2 - m - 6 = 0 luôn có hai nghiệm trái dấu khi và chỉ khi
A. m<-2
B. -3<m<2
C. -2
D. -2<m<3
Để phương trình đã cho có hai nghiệm trái dấu khi:
a c = m 2 - m - 6 < 0 ⇔ - 2 < m < 3
Chọn đáp án D.
Phương trình (m + 2) x 2 - 3x + 2m - 3 = 0 có hai nghiệm trái dấu khi và chỉ khi
A. m<-2
B. -2<m< 3 2
C. ( - ∞ ; - 9 2 ]
D. [ - 9 2 ; + ∞ )
Chọn B.
Phương trình (m + 2) x 2 - 3x + 2m - 3 = 0 có hai nghiệm trái dấu
Vậy phương trình (m + 2) x 2 - 3x + 2m - 3 = 0 có hai nghiệm trái dấu khi
Phương trình m + 1 x 2 - x - 3 m + 4 = 0 có hai nghiệm trái dấu khi và chỉ khi
A. m < - 1 hoặc m > 4 3
B. m < - 1 hoặc m > 3 4
C. m > 4 3
D. - 1 < m < 4 3
Phương trình m + 2 x 2 - 3 x + 2 m - 3 = 0 có hai nghiệm trái dấu khi và chỉ khi
A. m < - 2
B. - 2 < m < 3 2
C. m > 3 2
D. m < - 2 hoặc m > 3 2
2. Tìm giá trị của m để phương trình sau có 2 nghiệm cùng dấu. Khi đó 2 nghiệm mang dấu gì ? a) x - 2mx + 5m - 4= 0 (1) b) ma + mr +3 0 (2) 3. Cho phương trình: (m + 1)x2 + 2(m + 4)x + m+1 = 0 Tìm m để phương trình có: a) Một nghiệm b) Hai nghiệm phân biệt cùng dấu c) Hai nghiệm âm phân biệt 4. Cho phương trình (m - 4)x2 – 2(m- 2)x + m-1 = 0 Tìm m để phương trình a) Có hai nghiệm trái dấu và nghiệm âm có GTTÐ lớn hơn b) Có 2 nghiệm trái dấu và bằng nhau về GTTÐ c) Có 2 nghiệm trái dấu d) Có nghiệm kép dương. e) Có một nghiệm bằng 0 và một nghiệm dương.
Bất phương trình log 2 2 x - ( 2 m + 5 ) log 2 x + m 2 + 5 + 4 < 0 nghiệm đúng với mọi x ∈ [ 2 ; 4 ) khi và chỉ khi
A. m ∈ [ 0 ; 1 )
B. m ∈ [ - 2 ; 0 )
C. m ∈ ( 0 ; 1 ]
D. m ∈ ( - 2 ; 0 ]
Có yêu cầu bài toán tương đương với:
log 2 2 x - ( 2 m + 5 ) log 2 x + m 2 + 5 m + 4 < 0 ∀ x ∈ [ 2 ; 4 )
⇔ m ∈ [ - 2 ; 0 )
Chọn đáp án B.
*Chú ý bấm máy phương trình bậc hai
có hai nghiệm
Chọn đáp án B.
a) Xét pt đã cho có \(a=m^2+m+1\); \(b=-\left(m^2+2m+2\right)\); \(c=-1\)
Nhận thấy rằng \(ac=\left(m^2+m+1\right)\left(-1\right)=-\left(m^2+m+1\right)\)
\(=-\left(m^2+2m.\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)=-\left(m+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\)
Vì \(-\left(m+\dfrac{1}{2}\right)^2\le0\) và \(-\dfrac{3}{4}< 0\) nên \(-\left(m+\dfrac{1}{2}\right)^2-\dfrac{3}{4}< 0\) hay \(ac< 0\). Vậy pt đã cho luôn có 2 nghiệm trái dấu.
b) Theo câu a, ta đã chứng minh được pt đã cho luôn có 2 nghiệm trái dấu \(x_1,x_2\).
Áp dụng hệ thức Vi-ét, ta có \(S=x_1+x_2=-\dfrac{b}{a}=-\dfrac{-\left(m^2+2m+2\right)}{m^2+m+1}=\dfrac{m^2+2m+2}{m^2+m+1}\)
Nhận thấy \(m^2+m+1\ne0\) nên ta có:
\(\left(m^2+m+1\right)S=m^2+2m+2\) \(\Leftrightarrow Sm^2+Sm+S-m^2-2m-2=0\)\(\Leftrightarrow\left(S-1\right)m^2+\left(S-2\right)m+\left(S-2\right)=0\)(*)
pt (*) có \(\Delta=\left(S-2\right)^2-4\left(S-1\right)\left(S-2\right)\)\(=S^2-4S+4-4\left(S^2-3S+2\right)\)\(=S^2-4S+4-4S^2+12S-8\)\(=-3S^2+8S-4\)
Để pt (*) có nghiệm thì \(\Delta\ge0\) hay \(-3S^2+8S-4\ge0\)\(\Leftrightarrow-3S^2+6S+2S-4\ge0\)\(\Leftrightarrow-3S\left(S-2\right)+2\left(S-2\right)\ge0\) \(\Leftrightarrow\left(S-2\right)\left(2-3S\right)\ge0\)
Ta xét 2 trường hợp:
TH1: \(\left\{{}\begin{matrix}S-2\ge0\\2-3S\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S\ge2\\S\le\dfrac{2}{3}\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}S-2\le0\\2-3S\le0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}S\le2\\S\ge\dfrac{2}{3}\end{matrix}\right.\Leftrightarrow\dfrac{2}{3}\le S\le2\) (nhận)
Khi \(S=\dfrac{2}{3}\) thì (*) \(\Leftrightarrow\left(\dfrac{2}{3}-1\right)m^2+\left(\dfrac{2}{3}-2\right)m+\dfrac{2}{3}-2=0\)\(\Leftrightarrow-\dfrac{1}{3}m^2-\dfrac{4}{3}m-\dfrac{4}{3}=0\)\(\Leftrightarrow m^2+4m+4=0\)
\(\Leftrightarrow\left(m+2\right)^2=0\) \(\Leftrightarrow m+2=0\) \(\Leftrightarrow m=-2\)
Khi \(S=2\) thì (*) \(\Leftrightarrow\left(2-1\right)m^2+\left(2-2\right)m+2-2=0\)\(\Leftrightarrow m^2=0\)
\(\Leftrightarrow m=0\)
Vậy GTNN của S là \(\dfrac{2}{3}\) khi \(m=-2\) và GTLN của S là \(2\) khi \(m=0\)