Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
quý nguyễn
Xem chi tiết
Hoàng Trần Mai
Xem chi tiết
Trần Thị Quỳnh Hương
26 tháng 11 2021 lúc 17:08

 *Xét n=1

=> 37n+1 chia hết cho 1

*Xét n>1

=> 37n+1 không chia hết cho n 

Vậy BCNN (n;37n+1) = n(37n+1)= 37n2 + . với mọi n > 0

Khách vãng lai đã xóa
Nguyễn hải Yến
Xem chi tiết
Yen Nhi
26 tháng 11 2021 lúc 20:17

Answer:

a) Ta đặt \(a=\left(n;37n+1\right)\) \(\left(a\inℕ^∗\right)\)

Ta có: n chia hết cho a

=> 37n chia hết cho a

=> 37n + 1 chia hết cho a

Do vậy: (37n + 1) - 37n chia hết cho a

=> 1 chia hết cho a

=> a là ước của 1

=> a = 1

=> 37n + 1 và n là hai số nguyên tố cùng nhau

\(\Rightarrow BCNN\left(n;37n+1\right)=\left(37n+1\right)n=37n^2+n\)

Khách vãng lai đã xóa
đinh tuấn khang
Xem chi tiết
ngophamquynh tram
Xem chi tiết
Phạm Lan Chi
Xem chi tiết
Bùi Quang Khải
Xem chi tiết
Alex Arrmanto Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 1 2021 lúc 21:01

Vì 2n+1 và 2n+3 là số lẻ nên \(\left\{{}\begin{matrix}2n+1⋮̸2\\2n+3⋮̸2\end{matrix}\right.\)(1)

Gọi d là ƯCLN(2n+1,2n+3)(2)

\(\left\{{}\begin{matrix}2n+1⋮d\\2n+3⋮d\end{matrix}\right.\Leftrightarrow2n+1-2n-3⋮d\Leftrightarrow-2⋮d\)(3)

Từ (1) và (2) suy ra \(d\notin\left\{2;-2\right\}\)

Từ (3) suy ra \(d\inƯ\left(-2\right)\)

\(\Leftrightarrow d\in\left\{1;-1;2;-2\right\}\)

mà \(d\notin\left\{2;-2\right\}\)

nên d=1

hay ƯCLN(2n+1;2n+3)=1

⇔2n+1 và 2n+3 là hai số nguyên tố cùng nhau(đpcm)

Luna đáng iu không quạu...
9 tháng 1 2021 lúc 21:02

Gọi d = ƯCLN(2n + 1; 2n + 3) (d ϵ N* )

→ 2n + 1 ⋮ d, 2n + 3 ⋮ d

→ (2n + 1) - (2n + 3)  ⋮ d

→ 2  ⋮ d

→ d ϵ Ư(2) = {1,2}

Mà, 2n + 3 là số lẻ 

→ d = 1

Vậy, 2n + 1 và 2n + 3 nguyên tố với nhau với mọi số tự nhiên n 

 

BÙI BẢO KHÁNH
Xem chi tiết
Lê Song Phương
20 tháng 10 2023 lúc 20:40

Mình mẫu đầu với cuối nhé:

a)  Đặt \(ƯCLN\left(3n+4,3n+7\right)=d\)  

\(\Rightarrow\left\{{}\begin{matrix}3n+4⋮d\\3n+7⋮d\end{matrix}\right.\)

\(\Rightarrow\left(3n+7\right)-\left(3n+4\right)⋮d\)

\(\Rightarrow3⋮d\)

 \(\Rightarrow d\in\left\{1,3\right\}\)

Nhưng do \(3n+4,3n+7⋮̸3\) nên \(d\ne3\Rightarrow d=1\)

Vậy \(ƯCLN\left(3n+4,3n+7\right)=1\) hay \(3n+4,3n+7\) nguyên tố cùng nhau.

 e) \(ƯCLN\left(2n+3,3n+5\right)=d\)

 \(\Rightarrow\left\{{}\begin{matrix}2n+3⋮d\\3n+5⋮d\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}6n+9⋮d\\6n+10⋮d\end{matrix}\right.\)

\(\Rightarrow\left(6n+10\right)-\left(6n+9\right)⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d=1\)

Vậy \(ƯCLN\left(2n+3,3n+5\right)=1\), ta có đpcm.