Tính:
\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+.......+\(\frac{1}{100^2}\)<1
Trình bày cách giải luôn nhé!!!!
1, Tính \(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)2,Tính \(\left(1-\frac{1}{2^2}\right)x\left(1-\frac{1}{3^2}\right)x\left(1-\frac{1}{4^2}\right)x...x\left(1-\frac{1}{n^2}\right)\)
tính nhanh: \(\frac{100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}}\)
Tách 100 thành 100 số 1
Ta có: TS=\(100-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)=100-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{100}=\left(1-1\right)+\left(1-\frac{1}{2}\right)+\left(1-\frac{1}{3}\right)+...+\left(1-\frac{1}{100}\right)\)
=\(0+\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}=\frac{1}{2}+\frac{2}{3}+..+\frac{99}{100}\)=MS
=> Phân số trên=1
tính nhanh
\(100-\left(1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{100}\right)=\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+...+\frac{99}{100}\)
Tính:
\(E=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(F=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
\(F=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
\(F=\left(\frac{1}{2}+\frac{1}{2^3}+....+\frac{1}{2^{99}}\right)-\left(\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)
\(F=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)-2.\left(\frac{1}{2^2}+\frac{1}{2^4}+...+\frac{1}{2^{100}}\right)\)
\(F=\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}+\frac{1}{2^{100}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{50}}\right)\)
\(F=\frac{1}{2^{51}}+\frac{1}{2^{52}}+...+\frac{1}{2^{100}}\)
\(E=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(2E=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
\(2E-E=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
\(E=1-\frac{1}{2^{100}}\)
Tính Q=\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+....+\frac{1}{100}}{\frac{100-1}{1}+\frac{102-2}{2}+...+\frac{100-99}{99}}\)
Sửa đề:
\(Q=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{100-1}{1}+\frac{100-2}{2}+...+\frac{100-99}{99}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{100-1+\frac{100}{2}-1+...+\frac{100}{99}-1}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{\frac{100}{100}+\frac{100}{2}+\frac{100}{3}+...+\frac{100}{99}}\)
\(=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{100.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{99}+\frac{1}{100}\right)}=\frac{1}{100}\)
Tính:
\(\frac{1}{2}-\left(\frac{1}{3}+\frac{2}{3}\right)+\left(\frac{1}{4}+\frac{2}{4}+\frac{3}{4}\right)-\left(\frac{1}{5}+\frac{2}{5}+\frac{3}{5}+\frac{4}{5}\right)+...+\left(\frac{1}{100}+\frac{2}{100}+\frac{3}{100}+...+\frac{99}{100}\right)\)
Tính :
\(B=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
\(C=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}...+\frac{1}{2^{99}}-\frac{1}{2^{100}}\)
tính nhanh \(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}}{\frac{1}{2}+\frac{2}{3}+\frac{3}{4}+....+\frac{99}{100}}\)
tính \(D=\frac{100-\left(1+\frac{1}{2}+...+\frac{1}{100}\right)}{\frac{1}{2}+\frac{2}{3}+....+\frac{99}{100}}\)
tính
\(\left(\frac{1}{100}+\frac{99}{2}+\frac{98}{3}+...+100\right)\div\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)-2\)
mot ban co 309 cai keo hoi 23 ban bao nhieu cai keo/
\(\left(\frac{1}{100}+\frac{99}{2}+....+100\right)=\frac{1}{100}+1+\frac{2}{99}+1+....+\frac{99}{2}+1+1\)
đề sai r bạn