Cho 3b+9a=271. Tính 3a+b9
tính giá trị biểu thức (2a-b)/(3a-b)+(5b-a)/(3a+b)-3 biết 10a^2-3b^2-5ab=0 và 9a^2-b^2 khác 0
Cho 3 số nguyên dương a,b,c thoả mãn 9a^2+3b+3c+1, 9b^2+3a+3b+1mđều là cái số chính phương. Chứng minh a=b=c
cho 10a2-3b2+5ab=0 và 9a2-b2 khác 0 tính giá trị biểu thức Q= \(\frac{2a-b}{3a-b}\)+ \(\frac{5b-a}{3a+b}\)
tính nhanh
a) ( 9a^2 - 16b^2) : ( 4b - 3a )
b) (25a^2 - 30ab + 9b^2) : (3b - 5a )
c) ( 27a^3 - 27a^2 + 9a - 1) : (9a^2 - 6a + 1)
a,\(\dfrac{9a^2-16b^2}{4b-3a}=\dfrac{\left(3a-4b\right)\left(3a+4b\right)}{\text{4b-3a}}=-3a-4b\)
b,\(\dfrac{25a^2-30ab+9b^2}{3b-5a}=\dfrac{\left(5a-3b\right)^2}{3b-5a}=3b-5a\)
c,\(\dfrac{27a^3-27a^2+9a-1}{9a^2-6a+1}=\dfrac{27a^3-9a^2-18a^2+6a+3a-1}{9a^2-6a+1}=\dfrac{\left(3a-1\right)\left(9a^2-6a+1\right)}{9a^2-6a+1}=3a-1\)
Cho hai số thực a , b phân biệt thỏa mãn log 3 7 - 3 a = 2 - a và log 3 7 - 3 b = 2 - b Giá trị biểu thức 9 a + 9 b bằng
A.67
B.18
C.31
D.82
tính B=\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)biết 10a2-3b2+5ab=0 và 9a2 -b2 khắc0
ĐK \(9a^2-b^2\ne0\)
Ta có B =\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{\left(3a+b\right)\left(3a-b\right)}\)
=\(\frac{6a^2+2ab-3ab-b^2+15ab-5b^2-3a^2+ab}{9a^2-b^2}\)
=\(\frac{3a^2+15ab-6b^2}{9a^2-b^2}=\frac{3\left(a^2+5ab-2b^2\right)}{9a^2-b^2}\)
Từ \(10a^2-3b^2+5ab=0\Rightarrow5ab=3b^2-10a^2\)
\(\Rightarrow B=\frac{3\left(a^2+3b^2-10a^2-2b^2\right)}{9a^2-b^2}=\frac{3\left(-9a^2+b^2\right)}{9a^2-b^2}=-3\)
Vậy B =-3
Tính \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\) biết \(\hept{\begin{cases}10a^2-3b^2+5ab=0\\9a^2-b^2\ne0\end{cases}}\)
Tính\(A=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)biết \(10a^2-3b^2+5ab=0\)và \(9a^2-b^2\ne0\)
Theo giả thiết, ta có:
\(10a^2-3b^2+5ab=0\)
nên \(3\left(10a^2-3b^2+5ab\right)=0\)
\(\Leftrightarrow\) \(30a^2-9b^2+15ab=0\)
\(\Leftrightarrow\) \(15ab=-30a^2+9b^2\)
Do đó: \(A=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{\left(2a-b\right)\left(3a+b\right)+\left(5b-a\right)\left(3a-b\right)}{\left(3a-b\right)\left(3a+b\right)}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}=\frac{3a^2+\left(-30a^2+9b^2\right)-6b^2}{9a^2-b^2}\)
\(A=\frac{-27a^2+3b^2}{9a^2-b^2}=\frac{-3\left(9a^2-b^2\right)}{9a^2-b^2}=-3\) (do \(9a^2-b^2\ne0\) )
1.Tìm x:
96-3(x.1)=42
2.Cho a-b=8.Tính:
a.7a-7b
b.9a-3b+9b-3a
1. \(96-3\left(x.1\right)=42\)
\(96-3x=42\)
\(3x=96-42\)
\(3x=54\)
\(x=54:3\)
\(x=18\)
2.Theo bài ra ta có: \(a-b=8\)
a. Ta có: \(7a-7b=7\left(a-b\right)\)
\(=7.8=56\)
Bài 1:
96-3(x.1)=42
3.(x.1)= 96 - 42
3. (x.1)= 54
x.1= 54:3
x.1= 18
x=18:1=18
Vậy x = 18
Bài 2:
a) 7a-7b
Theo đề bài cho a-b=8
⇒ 7.a-7.b = 7. (a-b)=7.8=56
1) Tìm x:
\(96-3\left(x.1\right)=42\Leftrightarrow96-3x=42\)
\(\Leftrightarrow3x=96-42=54\Leftrightarrow x=\dfrac{54}{3}=18\)
2)Ta có: a-b=8
\(a)7a-7b=7\left(a-b\right)=7.8=56\)
\(b)9a-3b+9b-3a=6a+6b=6\left(a+b\right)\)
Tính giá trị biểu thức
A=(9a^5-ab^4-18a^4b+2b^5)/(3a^3b^2+ab^4-6a^2b^3-2b^5) với a/b=2/3
Bạn ơi giúp mình với nhé mình cảm ơn nhiều!!!!!!!!
\(A=\frac{9a^5-ab^4-18a^4b+2b^5}{3a^2b^2+ab^4-6a^2b^3-2b^5}\)
\(=\frac{a\left(9a^4-b^4\right)-2b\left(9a^4-b^4\right)}{ab^2\left(3a^2+b^2\right)-2b^3\left(3a^2+b^2\right)}\)
\(=\frac{\left(9a^4-b^4\right)\left(a-2b\right)}{\left(3a^2+b^2\right)\left(ab^2-2b^3\right)}\)
\(=\frac{\left(3a^2-b^2\right)\left(3a^2+b^2\right)\left(a-2b\right)}{\left(3a^2+b^2\right)b^2\left(a-2b\right)}\)
\(=\frac{3a^2-b^2}{b^2}\)
\(=3.\left(\frac{a}{b}\right)^2-1=3.\left(\frac{2}{3}\right)^2-1=\frac{1}{3}\)