1)Tìm x biết
2(x-1)-3(2x-2)-4(2x+3)=16
tìm x:
a.(x-3)^4-(x+3)^4+24x^3=216
b.(2x+1)(16x^4-8x^3+4x^2-2x+1)-(2x-1)(16x^4+8x^3+4x^2+2x+1)=2
tìm GTNN của bt:
x^2+2x+4
x^2-x-5/3/4
4x^2-x-3/16
Bài 2: Tìm x biết:
1,x\(^2\)+4x+4=25
2,(5-2x)\(^2\)-16=0
3,(x-3)\(^3\)-(x-3)(x\(^2\)+3x+9)+9(x+1)\(^2\)=15
4,3(x+2)\(^2\)+(2x-1)\(^2\)-7(x-3)9x+3)=36
5,(x-3)(x\(^2\)+3x+9)+x(x+2)(2-x)=1
6,(2x+1)\(^2\)-4(x+2)\(^2\)=9
7,(x+3)\(^{^{ }2}\)-(x-4)(x+8)=1
1: =>x^2+4x-21=0
=>(x+7)(x-3)=0
=>x=3 hoặc x=-7
2: =>(2x-5-4)(2x-5+4)=0
=>(2x-9)(2x-1)=0
=>x=9/2 hoặc x=1/2
3: =>x^3-9x^2+27x-27-x^3+27+9(x^2+2x+1)=15
=>-9x^2+27x+9x^2+18x+9=15
=>18x=15-9-27=-21
=>x=-7/6
6: =>4x^2+4x+1-4x^2-16x-16=9
=>-12x-15=9
=>-12x=24
=>x=-2
7: =>x^2+6x+9-x^2-4x+32=1
=>2x+41=1
=>2x=-40
=>x=-20
Tìm x:
a) (2x - 1) (x^2 - x + 1) = 2x^3 - 3x^2 + 2
b) (x + 1) (x^2 + 2x + 4) - x^3 - 3x^2 + 16 = 0
c) (x + 1) (x + 2) (x + 5) - x^3 - 8x^2 = 27
a) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
b) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\dfrac{10}{3}\)
c) Ta có: \(\left(x+1\right)\cdot\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2-27=0\)
\(\Leftrightarrow x^3+5x^2+3x^2+15x+2x+10-x^3-8x^2-27=0\)
\(\Leftrightarrow17x=17\)
hay x=1
BT2: Tìm x 2, 3x(x-4)+2x-8=0 3, 4x(x-3)+x^2-9=0 4, x(x-1)-x^2+3x=0 5, x(2x-1)-2x^2+5x=16
2: \(3x\left(x-4\right)+2x-8=0\)
=>\(3x\left(x-4\right)+2\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(3x+2\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\3x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-\dfrac{2}{3}\end{matrix}\right.\)
3: 4x(x-3)+x2-9=0
=>\(4x\left(x-3\right)+\left(x+3\right)\left(x-3\right)=0\)
=>\(\left(x-3\right)\left(4x+x+3\right)=0\)
=>\(\left(x-3\right)\left(5x+3\right)=0\)
=>\(\left[{}\begin{matrix}x-3=0\\5x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{3}{5}\end{matrix}\right.\)
4: \(x\left(x-1\right)-x^2+3x=0\)
=>\(x^2-x-x^2+3x=0\)
=>2x=0
=>x=0
5: \(x\left(2x-1\right)-2x^2+5x=16\)
=>\(2x^2-x-2x^2+5x=16\)
=>4x=16
=>x=4
Tìm x, biết: 2.(x-1) - 3.(2x+2) - 4.(2x+3)=16
Tìm x biết 2(x-1)-3(2x+2)-4(2x+3)=16
Ta có: \(2\left(x-1\right)-3\left(2x+2\right)-4\left(2x+3\right)=16\)
\(\Rightarrow2x-2-6x-6-8x-12=16\)
\(\Rightarrow2x-6x-8x=16+2+6+12\)
\(\Rightarrow-12x=36\)
\(\Rightarrow x=-3\)
Vậy x = -3
2x-2- 6x -6 - 8x-12=16
2x-6x-8x=2+6+12+16
-12x=36
x= -3
Tìm x, biết 2(x-1)-3(2x+2)-4(2x+3)=16
Tìm giá trị nguyên của biến số x để BT đã cho cũng có giá trị nguyên
a) \(\dfrac{2x^3+x^2+2x+2}{2x+1}\)
b)\(\dfrac{3x^3-7x^2+11x-1}{3x-1}\)
c)\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\)
a:
ĐKXĐ: x<>-1/2
Để \(\dfrac{2x^3+x^2+2x+2}{2x+1}\in Z\) thì
\(2x^3+x^2+2x+1+1⋮2x+1\)
=>\(2x+1\inƯ\left(1\right)\)
=>2x+1 thuộc {1;-1}
=>x thuộc {0;-1}
b:
ĐKXĐ: x<>1/3
\(\dfrac{3x^3-7x^2+11x-1}{3x-1}\in Z\)
=>3x^3-x^2-6x^2+2x+9x-3+2 chia hết cho 3x-1
=>2 chia hết cho 3x-1
=>3x-1 thuộc {1;-1;2;-2}
=>x thuộc {2/3;0;1;-1/3}
mà x nguyên
nên x thuộc {0;1}
c:
ĐKXĐ: x<>2
\(\dfrac{x^4-16}{x^4-4x^3+8x^2-16x+16}\in Z\)
=>\(\left(x^2-4\right)\left(x^2+4\right)⋮\left(x-2\right)^2\left(x^2+4\right)\)
=>\(x+2⋮x-2\)
=>x-2+4 chia hết cho x-2
=>4 chia hết cho x-2
=>x-2 thuộc {1;-1;2;-2;4;-4}
=>x thuộc {3;1;4;0;6;-2}
Tìm x biết
2(x-1)-3(2x+2)-4(2x+3)=16
Tìm x nguyên biết (3/2)^2x-1=(3/4)^5x-4; 16/2x=2
b: =>2x=16/2=8
=>x=4
a: Sửa đề: (3/2)^2x-1=(3/2)^5x-4
=>2x-1=5x-4
=>-3x=-3
=>x=1