Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Minh Hiển
Xem chi tiết
abc
Xem chi tiết
Trần Xuân Mai
Xem chi tiết
NGUYỄN ĐÌNH AN 6A5
Xem chi tiết
Nguyễn Hồ Thảo Nguyên
11 tháng 2 2016 lúc 21:38

Kết quả : 0

Giải:

(-2012+2012)+(-2011+2011)+(-2010+2010)+(-2009+2009)+................+(-3+3)+(-2+2)+(-1+1)+0=0

Thieu Gia Ho Hoang
11 tháng 2 2016 lúc 21:36

bài toán này khó

nguyen gia binh
11 tháng 2 2016 lúc 21:36

Tổng các số trên là 0 

Nhóm thành các nhóm gồm các số đối là được

Đinh Viết Minh
Xem chi tiết
nguyễn văn tiến
Xem chi tiết
Duc Loi
7 tháng 6 2019 lúc 11:27

Hình như đề bài phải là : Tính tổng : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}+\frac{1}{2010.2011}\)

Nếu thế giải như sau : \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}+\frac{1}{2010}-\frac{1}{2011}\)

\(=1-\frac{1}{2011}=\frac{2010}{2011}.\)Vậy tổng đó là 2010/2011.

Xyz OLM
7 tháng 6 2019 lúc 11:30

Ta có :\(\frac{1}{1}:2+\frac{1}{2}:3+...+\frac{1}{2010}:2011\)

\(\frac{1}{1}\times\frac{1}{2}+\frac{1}{2}\times\frac{1}{3}+...+\frac{1}{2010}\times\frac{1}{2011}\)

\(\frac{1}{1\times2}+\frac{1}{2\times3}+...+\frac{1}{2010\times2011}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(1-\frac{1}{2011}\)

\(\frac{2010}{2011}\)

四种草药 - TFBoys
Xem chi tiết
Đỗ Khánh Giang
22 tháng 11 2021 lúc 10:23

Lại toán lớp 6

Khách vãng lai đã xóa
le lan anh
Xem chi tiết
nguyen thi huong giang
Xem chi tiết