So sánh phân số \(\frac{-175}{174}\) với phân số \(\frac{-200}{201}\)
so sánh 2 phân số \(\frac{200}{201}+\frac{201}{202}và\frac{200+201}{201+202}\)
Ta có:\(\frac{200}{201}>\frac{200}{201+202}và\frac{201}{202}>\frac{201}{201+202}\)
Suy ra\(\frac{200}{201}+\frac{201}{202}>\frac{200}{201+202}+\frac{201}{201+202}=\frac{200+201}{201+202}\)
Vậy\(\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
Ta co:\(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+202}\)
Vi \(\frac{200}{201}>\frac{200}{201+202},\frac{201}{202}>\frac{201}{201+202}\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
Ta có : \(\frac{200+201}{201+202}=\frac{200}{201+202}+\frac{201}{201+201}\)
Mà : \(201<201+202\Rightarrow\frac{200}{201}>\frac{200}{201+202}\)
\(\frac{201}{202}>\frac{201}{201+202}\)
\(\Rightarrow\frac{200}{201}+\frac{201}{202}>\frac{200+201}{201+202}\)
\(hnhaminhhlai\)
So sánh các số :
\(\frac{200}{201}+\frac{200}{202}và\frac{200+201}{201+202}\)
Chứng minh phân số \(\frac{n}{n+1}\) tối giản; (\(n\in N\) và \(n\ne0\)
So sánh phân số
A/ \(\frac{2009}{2010}\)và\(\frac{2010}{2011}\)
B/ \(\frac{1}{3^{400}}\) và \(\frac{1}{4^{300}}\)
C/\(\frac{200}{201}+\frac{201}{202}và\frac{200+201}{201+202}\)
D/\(\frac{2008}{2008\cdot2009}và\frac{2009}{2009\cdot2010}\)
mik làm câu A thôi nha
ta có :
1 - 2009/2010 = 1/2010
1 - 2010/2011 = 1/2011
Phần bù nào bé thì phân số đó lớn .
Vì 1/2010 > 1/2011
Nên 2009/2010 > 2010/2011
Ta thấy hiệu giữa mẫu số và tử số của hai phân số bằng nhau ( = 1 )
Để so sánh hai phân số, ta so sánh các hiệu.
\(1-\frac{2009}{2010}\)và \(1-\frac{2010}{2011}\)
Ta có :
\(1-\frac{2009}{2010}=\frac{2010}{2010}-\frac{2009}{2010}=\frac{1}{2010}\)
\(1-\frac{2010}{2011}=\frac{2011}{2011}-\frac{2010}{2011}=\frac{1}{2011}\)
Ta thấy :
\(\frac{1}{2010}>\frac{1}{2011}\)
Hay :
\(1-\frac{2009}{2010}>1-\frac{2010}{2011}\)
Vậy \(\frac{2009}{2010}< \frac{2010}{2011}\)
so sánh \(A=\frac{201+200}{201-200},B=\frac{\left(201^2+200^2\right)}{201^2-200^2}\)
Không tính , hãy so sánh :
\(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}\)
\(B=\frac{199+200+201}{200+201+202}\)
\(\frac{199}{200}>\frac{199}{200+201+202}\)
\(\frac{200}{201}>\frac{200}{200+201+202}\)
\(\frac{201}{202}>\frac{201}{200+201+202}\)
=>\(A>B\)
Do \(\frac{199}{200}\)> \(\frac{199}{200+201+202}\), \(\frac{200}{201}\)>\(\frac{200}{200+201+202}\),\(\frac{201}{202}\)>\(\frac{201}{200+201+202}\)nên A>B
Không tính , hãy so sánh :
\(A=\) \(\frac{199}{200}+\frac{200}{201}+\frac{201}{202}\)
\(B=\frac{199+200+201}{200+201+202}\)
\(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}< \frac{199}{200+201+202}+\frac{200}{200+201+202}+\frac{201}{200+201+202}\)
A \(< \frac{199+200+201}{200+201+202}=B\)
\(A< B\)
Ta có: \(A=\frac{199}{200}+\frac{200}{201}+\frac{201}{202}< \frac{199}{200+201+202}+\frac{200}{200+201+202}+\frac{201}{200+201+202}< \)
\(< \frac{199+200+201}{200+201+202}\)
Vậy A < B
ỦNG HỘ TỚ NHA
\(B=\frac{199+200+201}{200+201+202}\)
\(B=\frac{199}{200+201+202}+\frac{200}{200+201+202}+\frac{201}{200+201+202}< \frac{199}{200}+\frac{200}{201}+\frac{201}{202}=A\)
Vậy B < A ( bài này chủ yếu so sánh hai phân số cùng từ, phân số nào có mẫu lớn hơn thì phân số đó nhỏ hơn )
Trình bày câu này: So sánh hai phân số -101/-100 và 200/201
so sánh hai phân số :
1/3400 và 1/ 4300
200/201+201/202 và 200+201/201+202
2008/2008x2009 và 2009/2009x2010
ta có: \(\frac{2008}{2008\cdot2009}=\frac{2008}{2008}\cdot\frac{1}{2009}=1\cdot\frac{1}{2009}\)
\(\frac{2009}{2009\cdot2010}=\frac{2009}{2009}\cdot\frac{1}{2010}=1\cdot\frac{1}{2010}\)
Vì 2009<2010 nên \(\frac{1}{2009}>\frac{1}{2010}nên\frac{2008}{2008\cdot2009}>\frac{2009}{2009\cdot2010}\)
Chúc bạn học tốt!^_^
\(\frac{200}{201}\)+\(\frac{202}{201}\) và \(\frac{200+201}{202+201}\) SO SÁNH