Có 2 con đường a1 và a2 đi từ A đến B và có. 3 con đường b1,b2,b3 đi từ B đến C. a1b1 là 1 trong các con đường đi từ A đến C qua B. Viết tập hợp các con đường đi từ A đến C qua B.
Có 2 con đường a1 và a2 đi từ A đến B và có. 3 con đường b1,b2,b3 đi từ B đến C. a1b1 là 1 trong các con đường đi từ A đến C qua B. Viết tập hợp các con đường đi từ A đến C qua B.
Mỗi câu sau đây là đúng hay sai?
a) Có một và chỉ một đường thẳng đi qua hai điểm (phân biệt) cho trước.
b) Có đúng ba đường thẳng đi qua ba điểm (phân biệt) cho trước.
c) Có đúng sáu đường thẳng đi qua bốn điểm (phân biệt) cho trước.
d) Hai đường thẳng phân biệt thì song song với nhau.
e) Hai đường thẳng không cắt nhau thì song song.
f) Hai đường thẳng không song song thì cắt nhau.
g) Hai đường thẳng không phân biệt thì trùng nhau.
h) Ba đường thẳng phân biệt, đôi một cắt nhau thì có đúng 3 giao điểm (phân biệt).
Câu đúng: a) và g).
Câu sai: b), c), d), e), f), h).
Giải thích:
- Câu b sai vì nếu ba điểm( phân biệt) cho trước là ba điểm thẳng hàng thì có đúng 1 đường thẳng đi qua ba điểm đó.
- Câu c sai vì nếu bốn điểm ( phân biệt) cho trước là bốn điểm thẳng hàng thì có đúng 1 đường thẳng đi qua bốn điểm đó.
- Câu d sai vì hai đường thẳng phân biệt có thể song song hoặc cắt nhau.
- Câu e sai vì hai đường thẳng không cắt nhau có thể trùng nhau hoặc song song.
- Câu f sai vì hai đường thẳng không song song có thể có thể trùng nhau hoặc cắt nhau.
- Câu h sai vì ba đường thẳng phân biệt, đôi một cắt nhau thì có thể có đúng 1 giao điểm. Như hình vẽ dưới đây.
Cho tam giác ABC cần (AB=AC), kẻ BF vuông góc với AC. E là 1 điểm trên cạnh BC. Gọi I,K,H thứ tự là chân đường vuông góc kẻ từ E xuống BF,AB,AC.
a.Chứng minh: EK=BI. Từ đó tìm điều kiện của tam giác ABC để EK+EH=AD (AD là độ dài đường vuông góc kẻ từ A đến BC)
b.Gọi N là trung điểm của BE, P là giáo điểm của đường thẳng EK và đường thẳng qua C vuông góc với AC. Tính số đo góc ANP.
Một vũng nước nhỏ cách chân 1 cột đèn cao 8m. Một học sinh đứng cách chân cột đèn 10m, nhìn thấy ảnh bóng đèn trên đỉnh cột đèn qua vũng nước. Biết vũng vũng nước nằm giữa đường thẳng nối từ học sinh đến cột đèn và mắt học sinh cách đất 1,5m
a. Hãy vẽ đường truyền ánh sáng từ đèn đến mắt học sinh
b. Tính khoảng cách từ học sinh đến vũng nước
Cho nửa đường tròn (O) đường kính AB. Lấy M∈OA, N∈nửa đường tròn (O). Từ A và B vẽ các tiếp tuyến Ax và By. Đường thẳng qua N và vuông góc với NM cắt Ax tại C, cắt By tại D. Gọi I là giao điểm của AN và CM, K là giao điểm của BN và DM. Chứng minh IK //AB.
△AMB nội tiếp đường tròn đường kính AB nên △AMB vuông tại M.
- Ta có: \(\widehat{CAB}+\widehat{DBA}=90^0+90^0=180^0\)
\(\Rightarrow\widehat{CAM}+\widehat{MAB}+\widehat{DBM}+\widehat{MBA}=180^0\)
\(\Rightarrow\left(\widehat{CAM}+\widehat{DBM}\right)+\left(\widehat{MAB}+\widehat{MBA}\right)=180^0\)
\(\Rightarrow\left(\widehat{CAM}+\widehat{DBM}\right)+90^0=180^0\) nên \(\widehat{CAM}+\widehat{DBM}=90^0\)
Tứ giác ANMC có: \(\widehat{NAC}+\widehat{NMC}=90^0+90^0=180^0\)
Nên tứ giác ANMC nội tiếp \(\Rightarrow\widehat{CAM}=\widehat{CNM}\)
Tứ giác BNMD có: \(\widehat{NBD}+\widehat{NMD}=90^0+90^0=180^0\)
\(\Rightarrow\)Tứ giác BNMD nội tiếp \(\Rightarrow\widehat{MBD}=\widehat{MND}\)
\(\Rightarrow\widehat{CNM}+\widehat{MND}=\widehat{CAM}+\widehat{MBD}=90^0\)
\(\Rightarrow\widehat{INK}=90^0\).
Tứ giác MINK có: \(\widehat{IMK}+\widehat{INK}=90^0+90^0=180^0\)
\(\Rightarrow\)Tứ giác MINK nội tiếp nên \(\widehat{MIK}=\widehat{MNK}\)
Lại có \(\widehat{MNK}=\widehat{MBD}\left(cmt\right)\) \(\Rightarrow\widehat{MIK}=\widehat{MBD}\)
Xét (O): \(\widehat{MBD}=\widehat{MAB}\left(=\dfrac{1}{2}sđ\stackrel\frown{MB}\right)\)
\(\Rightarrow\widehat{MIK}=\widehat{MAB}\) nên IK//AB
Bài 4: (3 điểm) Cho đường tròn (O; R), đường kính MN. Qua M và N vẽ lần lượt hai tiếp tuyến (d) và (d’) với đường tròn (O). Một đường thẳng qua O cắt đường thẳng (d) ở A và cắt đường thẳng (d’) ở P. Từ O vẽ một tia vuông góc với AP và cắt đường thẳng (d’) ở B.
Chứng minh OA = OP . OH vuông góc với AB. Chứng minh OH = R và AB là tiếp tuyến của đường tròn (O).
Chứng minh AM.BN = R2.
Tìm vị trí của điểm A để diện tích tứ giác ABNM nhỏ nhất. Vẽ hình minh họa trong trường hợp này.
cho đường tròn tâm o. điểm P nằm trong đường tròn, một đường thẳng d đi qua điểm P cắt đường tròn tại A và B, H là trung điểm của AB.
a, H nằm trong đường tròn xác định.
b, đường thẳng d nằm ở vị trí nào thì dây AB lớn nhất.
c, đường thẳng d nằm ở vị trí nào thì dây AB bé nhất
Một con thỏ chạy trên một con đường mà phải đi 2/3 con đường đi qua đồng cỏ và đoạn đường còn lại là đi qua đầm lầy. Thời gian con thỏ chạy trên đồng cỏ bằng nửa thời gian chạy qua đầm lầy. Hỏi vận tốc của con thỏ trên đoạn đường nào lớn hơn? Tính tỉ số vận tốc của con thỏ trên 2 đoạn đường?
Đặt s1 ; v1 ; t1 lần lượt là quãng đường, vận tốc và thời gian thỏ chạy trên đồng cỏ;
s2 ; v2 ; t2 lần lượt là quãng đường, vận tốc và thời gian thỏ chạy trên đầm lầy.
Khi đó ta có tỉ số : \(v_1=\frac{s_1}{t_1};v_2=\frac{s_2}{t_2}\)
Vậy thì \(\frac{v_1}{v_2}=\frac{s_1}{t_1}:\frac{s_2}{t_2}=\frac{s_1}{t_1}.\frac{t_2}{s_2}=\frac{s_1}{s_2}.\frac{t_2}{t_1}=2.2=4\)
Vậy vận tốc của Thỏ trên đồng cỏ lớn hơn và gấp 4 lần vận tốc của Thỏ trên đầm lầy.
vận tốc trên đồng cỏ lớn hơn và gấp 4 lần vận tốc ở đầm lầy
Vận tốc của Thỏ trên đồng cỏ lớn hơn và gấp 4 lần vận tốc của Thỏ trên đầm lầy.
Cho (O;R) và đường thẳng d cố định, khoảng cách từ tâm O đến đường thẳng d là 2R. Điểm M thuộc đường thẳng d, qua M kẻ các tiếp tuyến MA,MB tới (O) ( A,B là tiếp điểm )
a) Chứng minh các điểm O,A,M,B cùng nằm trên một đường tròn
b) Gọi D là giao điểm đoạn OM với (O). Chứng minh D là tâm đường tròn nội tiếp tam giác ABM
c) Điểm M di động trên đường thẳng d. Xác định vị trí điểm M sao cho diện tích tam giác MAB đạt giá trị nhỏ nhất.
Cho đường tròn tâm O, đường kính AB. M là một điểm nằm trên đoạn thẳng OB (M khác O và khác B). Đường thẳng d qua M và vuông góc với AB cắt đường tròn (O) tại C, D. Trên tia MD lấy điểm E nằm ngoài đường tròn (O). Đường thẳng AE cắt (O) tại điểm thứ hai I khác A, đường thẳng BE cắt (O) tại điểm thứ hai K khác B. Gọi H là giao điểm của BI và d.
a. Chứng minh tứ giác MBEI nội tiếp được trong một đường tròn. Xác định tâm của đường tròn này.
b. Chứng minh các tam giác IEH và MEA đồng dạng với nhau.
c. Chứng minh EC.ED = EH.EM
d Chứng minh khi E thay đổi, đường thẳng HK luôn đi qua một điểm cố định
a/ Ta có
^AIB=90 (góc nt chắn nửa đường tròn) => BI vuông góc AE
d vuông góc với AB tại M
=> M và I cùng nhìn BE dưới 1 góc 90 => M; I cùng nằm trên đường tròn đường kính BE => MBEI là tứ giác nội tiếp
b/ Xét tam giác vuông MEA và tam giác vuông IEH có ^AEM chung => tg MEA đồng dạng với tg IEH
d/ Xét tg ABE có
BI vuông góc AE
ME vuông góc AB
=> H là trực tâm cuat tg ABE
Ta có ^AKB =90 (góc nt chắn nửa đường tròn => AK vuông góc với BE
=> AK đi qua H (trong tam giác 3 đường cao đồng quy
=> Khi E thay đổi HK luôn đi qua A cố định
Cô hướng dẫn nhé :)
a. Ta thấy góc MBE = góc BIE = 90 độ nên từ giác MBEI nội tiếp đường tròn đường kính BE, vậy tâm là trung điểm BE.
b. \(\Delta IEH\sim\Delta MEA\left(g-g\right)\) vì có góc EIH = góc EMA = 90 độ và góc E chung.
c. Từ câu b ta có : \(\frac{IE}{EM}=\frac{EH}{EA}\Rightarrow EH.EM=IE.EA\) Vậy ta cần chứng minh \(EC.ED=IE.EA\)
Điều này suy ra được từ việc chứng minh \(\Delta IED\sim\Delta CEA\left(g-g\right)\)
Hai tam giác trên có góc E chung. góc DIE = góc ACE (Tứ giác AIDC nội tiếp nên góc ngoài bằng góc tại đỉnh đối diện)
d. Xét tam giác ABE, ta thấy do I thuộc đường trong nên góc AIB = 90 độ. Vậy EM và BI là các đường cao, hay H là trực tâm của tam giác ABE. Ta thấy AK vuông góc BE, AH vuông góc BE, từ đó suy ra A, H ,K thẳng hàng. Vậy khi E thay đổi HK luôn đi qua A.
Tự mình trình bày để hiểu hơn nhé . Chúc em học tốt ^^