Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Viết Phong
Xem chi tiết
oOo_Mệt Rồi Biết Dựa Vào...
3 tháng 1 2016 lúc 8:11

tính dần rồi so sánh tkoi bạn 

 

Gemini Song Tử
9 tháng 3 2017 lúc 21:57

Ta có 

A= 1,066018877

=> A > 2/3

tớ tính máy tính ra A = 1,066018877

Nguyễn Mai Linh
Xem chi tiết
Nguyễn Ngọc Anh
Xem chi tiết
Không Tên
27 tháng 3 2018 lúc 13:04

\(A=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2016.2017}\right):2\)

\(=\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\right):2\)

\(=\left(1-\frac{1}{2017}\right):2\)\(< \)\(\frac{1}{2}\)   (Do 1 - 1/2017 < 1)

NGUYỄN LÊ BẢO CHÂU
Xem chi tiết
Cô nàng cự giải
1 tháng 6 2018 lúc 14:38

 Vì \(\frac{1}{33}>\frac{1}{34}>\frac{1}{35}>\frac{1}{36}\)

\(\Rightarrow M>\frac{1}{36}+\frac{1}{36}+\frac{1}{36}+\frac{1}{36}\)\(\)

\(\Rightarrow M>\frac{4}{36}=\frac{1}{9}\)

Mà \(\frac{1}{9}>\frac{1}{10}\)

\(\Rightarrow\)\(M>\frac{1}{9}>\frac{1}{10}\)

Vậy : M > N

Xem chi tiết
Con Chim 7 Màu
15 tháng 3 2019 lúc 19:04

Ta co:\(A=\frac{1}{2.2}+\frac{1}{4.4}+\frac{1}{6.6}+...+\frac{1}{14.14}< \frac{2}{2.4}+\frac{2}{4.6}+\frac{1}{6.8}+...+\frac{2}{14.16}\left(1\right)\)

\(\frac{2}{2.4}+\frac{2}{4.6}+\frac{2}{6.8}+...+\frac{2}{14.16}\)

\(=\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{14}-\frac{1}{16}\)

\(=\frac{1}{2}-\frac{1}{16}=\frac{7}{16}< \frac{8}{16}=\frac{1}{2}\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow A< \frac{1}{2}\)

V...

Con Chim 7 Màu
15 tháng 3 2019 lúc 19:06

cho dong dau tien la dau =,chu ko phai dau < nhe

Cảm ơn  bạn nhiều 

Trần Kim Ngân
Xem chi tiết
Trần Thị Hoàn
Xem chi tiết
Nguyễn Dương
Xem chi tiết
Nguyễn Đăng Tuyển
Xem chi tiết
Arima Kousei
8 tháng 7 2018 lúc 21:37

Ta có : 

\(A=\frac{1}{2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)

\(\Rightarrow A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{18.19.20}\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{19.20}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)\)

\(\Rightarrow A=\frac{1}{4}-\frac{1}{760}< \frac{1}{4}\)

Vậy \(A< \frac{1}{4}\)

Phạm Tuấn Đạt
8 tháng 7 2018 lúc 21:19

\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{18.19.20}\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{18.19}-\frac{1}{19.20}\right)\)

\(\Rightarrow A=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{380}\right)=\frac{1}{2}\left(\frac{189}{380}\right)=\frac{189}{760}< \frac{1}{4}\)

Dương Lam Hàng
8 tháng 7 2018 lúc 21:23

Ta có: \(A=\frac{1}{2\times3}+\frac{1}{2\times3\times4}+\frac{1}{3\times4\times5}+....+\frac{1}{18\times19\times20}\)

              \(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{2\times3}+\frac{1}{2\times3}-\frac{1}{3\times4}+...+\frac{1}{18\times19}-\frac{1}{19\times20}\right)\)

               \(=\frac{1}{2}\times\left(\frac{1}{1\times2}-\frac{1}{19\times20}\right)\)

                 \(=\frac{1}{2}\times\frac{1}{1\times2}-\frac{1}{2}\times\frac{1}{19\times20}\)

                   \(=\frac{1}{4}-\frac{1}{2}\times\frac{1}{19\times20}< \frac{1}{4}\)

Vậy A < 1/4