Tìm các số nguyên x,y thỏa mãn : | x - 2012 | + | 2013 - y | = 1
Tìm các số nguyên tố x,y thỏa mãn: /x-2012/+/2013-y/=1
{x;y}={2013;2013}(tmdb)
k cho mình nha
tìm các số tự nhiên x,y,z để thỏa mãn : 2014x=2013y+2012z
a, có hay không ác số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2014
b, có hay không các số tự nhiên x thỏa mãn x(x+1)(x+2)=2012
c, có hay không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2011
d , có không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2013
Tìm tất cả các cặp số (x;y) thỏa mãn :\(\left(2x-y+7\right)^{2012}+|x-3|^{2013}\le0\)
\(\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}\le0\)
Vì \(\left(2x-y+7\right)^{2012}\ge0\forall x;y\)và \(\left|x-3\right|\ge0\Leftrightarrow\left|x-3\right|^{2013}\ge0\forall x\)
\(\Rightarrow\left(2x-y+7\right)^{2012}+\left|x-3\right|^{2013}=0\)
Dấy "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-y+7=0\\x-3=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=13\\x=3\end{cases}}}\)
Vậy....
a, có hay không ác số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2014
b, có hay không các số tự nhiên x thỏa mãn x(x+1)(x+2)=2012
c, có hay không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2011
d , có không các số tự nhiên x, y thỏa mãn : (x+y)(x-y)=2013
:D :D :D :D
Các số thực x, y, z thỏa mãn:
\(\hept{\begin{cases}\sqrt{x+2011}+\sqrt{y+2012}+\sqrt{z+2013}=\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}\\\sqrt{y+2011}+\sqrt{z+2012}+\sqrt{x+2013}=\sqrt{z+2011}+\sqrt{x+2012}+\sqrt{y+2013}\end{cases}}\)
CMR: \(x=y=z\)
Đặt \(\hept{\begin{cases}a=x+2011\\b=y+2011\\c=z+2011\end{cases}}\) Ta có Hệ:
\(\hept{\begin{cases}\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}\left(A\right)=\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)\\\sqrt{b}+\sqrt{c+1}+\sqrt{a+2}\left(B\right)=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\left(C\right)\end{cases}}\)
Vai trò \(x,y,z\) bình đẳng
Giả sử \(c=Max\left(a;b;c\right)\) vì \(A=C\) ta có:
\(\sqrt{a}+\sqrt{b+1}+\sqrt{c+2}=\sqrt{c}+\sqrt{a+1}+\sqrt{b+2}\)
\(\Leftrightarrow\left(\sqrt{a+1}-\sqrt{a}\right)+\left(\sqrt{b+2}-\sqrt{b+1}\right)\)
\(=\sqrt{c+2}-\sqrt{c}=\left(\sqrt{c+2}-\sqrt{c+1}\right)+\left(\sqrt{c+1}-\sqrt{c}\right)\)
\(\Leftrightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}+\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\)
\(=\frac{1}{\sqrt{c+2}+\sqrt{c+1}}+\frac{1}{\sqrt{c+1}+\sqrt{c}}\left(1\right)\)
Mặt khác \(\hept{\begin{cases}c\ge a\Rightarrow\frac{1}{\sqrt{a+1}+\sqrt{a}}\le\frac{1}{\sqrt{c+1}+\sqrt{c}}\\c\ge b\Rightarrow\frac{1}{\sqrt{b+2}+\sqrt{b+1}}\le\frac{1}{\sqrt{c+2}+\sqrt{c+1}}\end{cases}}\)
Suy ra \(\left(1\right)\) xảy ra khi \(a=b=c\Leftrightarrow x=y=z\) (Đpcm)
Tìm các số nguyên x,y,z thỏa mãn : x^2013 + y^2016 + z^2019 = 2018^2021
Cho các số dương x, y thỏa mãn hệ thức x2012+y2012=x2013+y2013=x2014+y2014.
Tính giá trị biểu thức P= x2015+y2015.
\(\Rightarrow x^{2014}+y^{2014}-2\left(x^{2013}+y^{2013}\right)+x^{2012}+y^{2012}=0\)
\(\Leftrightarrow x^{2012}.\left(x-1\right)^2+y^{2012}.\left(y-1\right)^2=0\)
\(\Rightarrow x=1;y=1\)
\(\Rightarrow P=2\)
Tìm các cặp số nguyên tố x;y thỏa mãn: x2+8y=2012