tinh
a,|x-3y|^2007+|y+4|^2008=0
|x-3y| ^2007+ |y+4| ^2008 < hoặc = 0|x-3y| ^2007+ |y+4| ^2008 < hoặc = 0
/x-3y/^2007+/y+4/^2008=0 ;9x+y)^2006+2007/y-1/=0 d)/x-y-5/+2007(y-3)^2008=0
Tìm x và y thoã mãn
[x-3y]^2007 + [y +4]^2008 = 0
2007[2x-y]^2008 + 2008[y - 4]^2007 bé thua hoặc bàng 0
2(x-5)^4 + 5[2y - 7]^5 = 0
mình đang caanf gấp ai giải dc mình sẽ like
CÁi thứ hai :
vì 2007 (2x -y)^2008 >= 0 để bt <0 => 2x - y = 0 => 2x=y
=> y- 4 = 0 => y = 4
2x = 4 => x = 2
VẬy x = 2 ;4
Thứ ba :
Vì 2( x- 5)^4 >= 0
Để 2( x- 5)^4 + 5(2y- 7)^5 = 0
= > x- 5 = 0 => x = 5
2y -7 = 0 => y = 7/2
\(\left|x-3y\right|^{2007}\) +\(\left|y+4\right|^{2008}\) =0
\(\left(x+y\right)^{2006}\) +2007\(\left|y-1\right|\) =0
\(\left|x-y-5\right|\) + 2007\(\left|y-3\right|^{2008}\) =0
Tìm x, y thỏa mãn đẳng thức:
|x - 3y|2007 + |y + 4|2008 = 0
Ta thấy | x - 3y |2007 và | y + 4 |2008 luôn luôn bé hơn hoặc bằng 0 ( 1 )
Từ 1 ta suy ra 2 số hạng này không thể đối nhau
Chỉ còn trường hợp | x - 3y |2007 = 0 và | y + 4 |2008 = 0
=> x - 3y = 0 và y + 4 = 0 => y = - 4
Thay y = - 4 vào đẳng thức , ta được : x - 4.3 = 0 => x = 12
Vậy x = 12 ; y = - 4
Tìm x y thõa mãn
|x-y-2| + |y+3| = 0
(x-3y)2007 + (y+4)2008 = 0
Ta có: Ix-y-2I luôn lớn hơn hoặc bằng 0 với mọi x,y
Iy+3I luôn lớn hơn hoặc bằng 0 với mọi y
=> Ix-y-2I + Iy+3I luôn lớn hơn hoặc bằng 0
Mà Ix-y-2I + Iy+3I = 0
=> Ix-y-2I = 0 và Iy+3I = 0
=> x-y-2 = 0 và y+3 = 0
=> x-y= 2 và y=-3
=> x=y+2=-3+2=-1
Câu tương tự bạn cũng làm vậy thôi vì a2 và giá trị tuyệt đối của một số luôn luôn lớn hơn hoặc bằng 0. Chúc bạn học tốt
giúp mik vs
a) /x-y-2/+/y+3/=0
b) /x-3y/^2007 +/y+4/^2008=0
c)(x+y)^2004+2007/y-1/=0
tìm x và y biết
a) \(\left|x-y-2\right|+\left|y+3\right|=0\)
b) \(\left|x-3y\right|^{2007}+\left|y+4\right|^{2008}=0\)
c) \(\left(x+y\right)^{2006}+2007\left|y-1\right|=0\)
d) \(\left|x-y-5\right|+2007\left(y-3\right)^{2008}=0\)
Tìm x,y
\(\left(2x-5\right)^{2006}+\left(3y+4\right)^{2008}+\left|\frac{4}{3}x+\frac{5}{2}y\right|^{2007}=0\)
Vì mũ chẵn và GTTĐ luôn lớn hơn hoặc bằng 0
mà ... ( ghi đề bài ra )
\(\Rightarrow\hept{\begin{cases}2x-5=0\\3y+4=0\\\frac{4}{3}x+\frac{5}{2}y=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}\)
Vậy,.......