cho n thuộc N , tìm số tự nhiên lớn hơn 2n và nhỏ hơn 2n + 1
Số các số tự nhiên n lớn hơn 10 và nhỏ hơn 1000 thỏa mãn (2n+1) và (7n+2) nguyên tố cùng nhau.
Giả sử
(7n+2,2n+1) =k với k# 3
=> (7n+2, 3(2n+1)) =k (do k #3)
=> [7n+2 -3(2n+1), 2n+1] =k
=> (n-1, 2n+1) =k (*)
Mặt khác k lẻ do 2n +1 lẻ
Từ (*) => (2n+1, 2n-2) =k
=> [2n+ 1, (2n+1) -(2n-2)] =k
=> (2n+1,3) =k
do k # 3 => k=1
Từ đó suy ra với giá trị nào đó của n thì 2 số đã cho chỉ có ước chung duy nhất là k =3, còn lại là nguyên tố cùng nhau
Ta thấy nếu n có dạng n=3k +1 thì 2n+1 và 7n+2 có ước chung là k =3
=> n=3k và n=3k+2 thì 2 số đã cho nguyên tố cùng nhau
Từ 11 -> 999 có 989 số, trong đó có 329 số chia cho 3 dư 1 (do ko tính số 10 theo đề bài)
Như vậy còn lại 989 -329 = 660 số n để (2n+1) và (7n+2) nguyên tố cùng nhau
cho n thuộc N .tìm số tự nhiên lớn hơn n và nhỏ hơn n+1
vì n là số tự nhiên : n ; n+1 là 2 số tự nhiên liên tiếp => giữa 2 số đó toàn là số thập phân . Vậy không có số nào thỏa mãn yêu cầu
cho n thuộc N . Tìm số tự nhiên lớn hơn n và nhỏ hơn n+1
Không có số n nào thỏa mãn
Số các số tự nhiên n lớn hơn 10 và nhỏ hơn 1000 thỏa mãn(2n +1) và (7n+2) nguyên tố cùng nhau là bao nhiêu ?
Giả sử
(7n+2,2n+1) =k với k# 3
=> (7n+2, 3(2n+1)) =k (do k #3)
=> [7n+2 -3(2n+1), 2n+1] =k
=> (n-1, 2n+1) =k (*)
Mặt khác k lẻ do 2n +1 lẻ
Từ (*) => (2n+1, 2n-2) =k
=> [2n+ 1, (2n+1) -(2n-2)] =k
=> (2n+1,3) =k
do k # 3 => k=1
Từ đó suy ra với giá trị nào đó của n thì 2 số đã cho chỉ có ước chung duy nhất là k =3, còn lại là nguyên tố cùng nhau
Ta thấy nếu n có dạng n=3k +1 thì 2n+1 và 7n+2 có ước chung là k =3
=> n=3k và n=3k+2 thì 2 số đã cho nguyên tố cùng nhau
Từ 11 -> 999 có 989 số, trong đó có 329 số chia cho 3 dư 1 (do ko tính số 10 theo đề bài)
Như vậy còn lại 989 -329 = 660 số n để (2n+1) và (7n+2) nguyên tố cùng nhau
Tick nhé Nguyen Thi Le Giang
Giả sử
(7n+2,2n+1) =k với k# 3
=> (7n+2, 3(2n+1)) =k (do k #3)
=> [7n+2 -3(2n+1), 2n+1] =k
=> (n-1, 2n+1) =k (*)
Mặt khác k lẻ do 2n +1 lẻ
Từ (*) => (2n+1, 2n-2) =k
=> [2n+ 1, (2n+1) -(2n-2)] =k
=> (2n+1,3) =k
do k # 3 => k=1
Từ đó suy ra với giá trị nào đó của n thì 2 số đã cho chỉ có ước chung duy nhất là k =3, còn lại là nguyên tố cùng nhau
Ta thấy nếu n có dạng n=3k +1 thì 2n+1 và 7n+2 có ước chung là k =3
=> n=3k và n=3k+2 thì 2 số đã cho nguyên tố cùng nhau
Từ 11 -> 999 có 989 số, trong đó có 329 số chia cho 3 dư 1 (do ko tính số 10 theo đề bài)
Như vậy còn lại 989 -329 = 660 số n để (2n+1) và (7n+2) nguyên tố cùng nhau
Bài 1: Cho n thuộc N. Tìm số tự nhiên lớn hơn N và nhỏ hơn N+1
Tìm các số tự nhiên n lớn hơn 10 và bé hơn 1000 thỏa mãn (2n+1) và (7n+20) là số nguyên tố cùng nhau
Tìm các số tự nhiên lớn hơn 10 nhưng nhỏ hơn 1000 thỏa mãn (2n+1) và (7n+2) nguyên tố cùng nhau ?
A=n(n+1) /2, b=2n+1(n thuộc số tự nhiên ,n lớn hơn hoặc =2) .
Chứng tỏ a=1, b=1
cho n thuộc N.tìm số tự nhiên lớn hơn n và nhỏ hơn n+1
cho n thuộc N.Viết tập hợp số tự nhiên lớn hơn n và nhỏ hơn n+1
Vì n là số tự nhiên : n ; n+1 là 2 số tự nhiên liên tiếp => giữa 2 số đó toàn là số thập phân . Vậy không có số nào thỏa mãn yêu cầu