Chứng tỏ rằng : (15 ! - 18 ! ) chia hết cho 55
chứng tỏ rằng 55^111-55^110 chia hết cho 27
55^111 - 55^110
= 55^110.55 - 55^110.1
= 55^110.(55 - 1)
= 55^110.54
Mà 54 chia hết cho 27(54 = 27.2)
=> 55^110.54 chia hết cho 27
Vậy 55^111 - 55^110 chia hết cho 27
Chứng tỏ rằng :
a) 10^50 + 8 chia hết cho 18
b) 10^100 = 5 chia hết cho 15
c) 1494 . 1495 . 1496 chia hết cho 180
\(10^{50}\)có CSTC là 0 chia hết cho 2
8 chia hết cho 2 => \(10^{50}\)+8 chia hết cho 2
\(10^{50}\)có tổng các chữ số là 1
=> \(10^{50}\)+8 có tổng các chữ số là 9 chia hết cho 9
vì (9,2)=1 => \(10^{50}\)+8 chia hết cho 18(đpcm)
x(y+3)-y=-2
2x+xy -3y =18
(x^2 -5 ) . (x^2-25 ) là số nguyên âm
/7/+3^2 - (-2)^3
-7.18.9+43.63+(-21).375
15 -(-15+34)
chứng tỏ rằng 3a +12b chia hết cho 3.với mọi số nguyên a,b
chứng tỏ biết 5a+5b chia hết cho 3.chứng tỏ rằng với mọi số nguyên a,b ta có 5a+2b chia hết cho -3
chứng tỏ rằng :8^10 - 8^8 chia hết cho 55
Số này không chia hết cho 55 còn lại bn tính đi
Cho 23!+ 19! - 15! Chứng tỏ rằng B chia hết cho 11 , B chia hết cho 110, Chứng tỏ rằng 53! -51!chia hết cho 29
Thanks
Chứng tỏ rằng :
a, 8 mũ 15 +2 mũ 11 chia hết cho 17.
b, 69 mũ 2 - 69.5 chia hết cho 32.
c, 8 mũ 7 - 2 mũ 18 chia hết cho 14
chứng tỏ rằng: 8^10 -8^8 chia hết cho 55
\(8^{10}-8^8=8^8.8^2-8^8\)
\(=8^8.\left(8^2-1\right)=8^8.55\) chia hết cho 55
\(8^{10}-8^8=8^8\cdot\left(8^2-1\right)=8^8\cdot63\)
không chia hết cho 55
P/S: bạn thử xem lại đề nhé
chứng tỏ rằng 8^2012-8^2011-8^2010 chia hết cho 55
Chứng tỏ rằng:
a, 2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100 chia hết cho 31
b, 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126
a, Ta có:
2 + 2 2 + 2 3 + 2 4 + . . . + 2 99 + 2 100
= 2 + 2 2 + 2 3 + 2 4 + 2 5 +...+ 2 96 + 2 97 + 2 98 + 2 99 + 2 100
= 2. 1 + 2 + 2 2 + 2 3 + 2 4 +...+ 2 96 1 + 2 + 2 2 + 2 3 + 2 4
= 2 . 31 + 2 6 . 31 + . . . + 2 96 . 31
= 2 + 2 6 + . . . + 2 96 . 31 chia hết cho 31
b, Ta có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 1 + 5 + 5 3 1 + 5 + 5 5 1 + 5 + . . . + 5 149 1 + 5
= 5 . 6 + 5 3 . 6 + 5 5 . 6 + . . . + 5 149 . 6
= ( 5 + 5 3 + 5 5 + . . . + 5 149 ) . 6 chia hết cho 6
Ta lại có:
5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150
= 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 +...+ 5 145 + 5 146 + 5 147 + 5 148 + 5 149 + 5 150 (có đúng 25 nhóm)
= [ ( 5 + 5 4 ) + ( 5 2 + 5 5 ) + ( 5 3 + 5 6 ) ] + ... + [ 5 145 + 5 148 ) + ( 5 146 + 5 149 ) + ( 5 147 + 5 150 ]
= [ 5 ( 1 + 5 3 ) + 5 2 ( 1 + 5 3 ) + 5 3 ( 1 + 5 3 ) ] + ... + [ 5 145 1 + 5 3 ) + 5 146 ( 1 + 5 3 ) + 5 147 ( 1 + 5 3 ]
= ( 5 . 126 + 5 2 . 126 + 5 3 . 126 ) + ... + ( 5 145 . 126 + 5 146 . 126 + 5 147 . 126 )
= ( 5 + 5 2 + 5 3 ) . 126 + ( 5 7 + 5 8 + 5 9 ) . 126 + ... + ( 5 145 + 5 146 + 5 147 ) . 126
= 126.[ ( 5 + 5 2 + 5 3 ) + ( 5 7 + 5 8 + 5 9 ) + ... + ( 5 145 + 5 146 + 5 147 ) ] chia hết cho 126.
Vậy 5 + 5 2 + 5 3 + 5 4 + 5 5 + 5 6 + . . . + 5 149 + 5 150 vừa chia hết cho 6, vừa chia hết cho 126