Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Phương Thảo
Xem chi tiết
Nguyễn Tiến Đạt
12 tháng 7 2017 lúc 9:29

xét n(n+1)(4n+1)

Có (nn+n1)(4n+1)

(2n+n)(4n+1)=3n(4n+1)

Mà 3 nhân với số nào cũng chia hết cho 3=>3n(4n+1)chia hết cho 3

xét3n(4n+1)

có 3n*4n+3n

=>n(3+3)4n

=>n6*4n=24n chia hết cho 2

Nguyễn Tiến Đạt
12 tháng 7 2017 lúc 9:34

mình làm ko biết đúng không 

nhung chac la se dung

thắng
14 tháng 5 2021 lúc 9:23

I. Nội qui tham gia "Giúp tôi giải toán"

1. Không đưa câu hỏi linh tinh lên diễn đàn, chỉ đưa các bài mà mình không giải được hoặc các câu hỏi hay lên diễn đàn;

2. Không trả lời linh tinh, không phù hợp với nội dung câu hỏi trên diễn đàn.

3. Không "Đúng" vào các câu trả lời linh tinh nhằm gian lận điểm hỏi đáp.

Các bạn vi phạm 3 điều trên sẽ bị giáo viên của Online Math trừ hết điểm hỏi đáp, có thể bị khóa tài khoản hoặc bị cấm vĩnh viễn không đăng nhập vào trang web.

Khách vãng lai đã xóa
Tạ Phương Linh
Xem chi tiết
Trần Nguyễn Thúy Hạnh
Xem chi tiết
Nguyễn Gia Đạt
30 tháng 7 2021 lúc 19:38

 . .......................................................................................................................................jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

Khách vãng lai đã xóa
Đặng Lê Tùng Lâm
Xem chi tiết
Nghiem Tuan Minh
26 tháng 1 2020 lúc 18:19

1)

Ta có 5n-1=5n+10-11=5(n+2)-11

Vì 5(n+2) chia hết cho (n+2)

Để [5(n+2)-11] chia hết cho (n+2)<=>11 chia hết cho (n+2)<=>(n+2) thuộc Ư(11)

Ta có Ư(11)={1;11;-1;-11}

Ta có bảng giá trị sau

(n+2)-11-1111
n-13-3-1

9

Vậy n thuộc{-13;-3;-1;9} thì 5n-1 chia hết cho n+2

3)3n chia hết cho n-1

Ta có 3n=3n-3+3=3(n-1)+3

Vì 3(n-1) chia hết cho (n-1)

Để [3(n-1)+3] chia hết cho (n-1)<=>3 chia hết cho (n-1)

<=>(n-1) thuộc Ư(3)

Ư(3)={1;3;-1;-3}

Ta có bảng giá trị sau

n-1-3-113
n-2024

Vậy n thuộc{-2;0;2;4} thì 3n chia hết cho n-1

Câu 2 mình k bt nha

Khách vãng lai đã xóa
Phạm Phương Quỳnh
Xem chi tiết
Nguyễn Đức Trí
14 tháng 7 2023 lúc 22:08

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

Thuốc Hồi Trinh
14 tháng 7 2023 lúc 21:41

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

Đứa dốt Toán
Xem chi tiết
Đứa dốt Toán
25 tháng 11 2017 lúc 17:00

Chứng minh rằng mọi số tự nhiên n thì tích (n+3) . ( n + 6) chia hết cho 2

ĐếCh CầN BiếT TêN
30 tháng 11 2017 lúc 11:43

ta có 4n+ 7 chia hết cho 2n +1 (1)
2n+ 1 chia hết cho 2n+1
=> 2(2n+1) chia hết cho 2n+1
=> 4n+2 chia hết cho 2n+1 (2)
từ (1) và (2)

Nguyễn Thu Diệu
Xem chi tiết
Bùi Minh Triết
Xem chi tiết
Chu Gia Linh
Xem chi tiết
Phương Thảo 2k5 nhân mã
Xem chi tiết
Huynh Mai Thao
10 tháng 7 2017 lúc 16:59

a)n=1

b)n=9

c)n=4

d)n=8