1/1x2+1/2x3 +......+1/x x(x+ 1)=996/997
Tim x biết 1\1x2+1\2*3 +1\3*4+----+1\**(×+1)=996\997
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{x\left(x+1\right)}=\frac{996}{997}\)
\(\Rightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{996}{997}\)
\(\Rightarrow1-\frac{1}{x+1}=\frac{996}{997}\)
\(\Rightarrow\frac{1}{x+1}=\frac{1}{997}\)
\(\Rightarrow x+1=997\)
\(\Rightarrow x=996\)
\(\Leftrightarrow\)1-1/2+1/2-1/3+1/3-1/4+..+1/x-1/(x+1)=996/997
\(\Leftrightarrow\)1-1/(x+1)=996/997
\(\Leftrightarrow\)\(\frac{x}{x+1}\)\(=\frac{996}{997}\)
\(\Leftrightarrow x=996\)
\(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{Xx\left(X+1\right)}=\frac{996}{997}\)
Xét dạng tổng quát : \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{ax\left(a+1\right)}-\frac{a}{ax\left(a+1\right)}=\frac{a+1-a}{ax\left(a+1\right)}=\frac{1}{ax\left(a+1\right)}\)
Do đó \(\frac{1}{ax\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
Áp dụng \(\frac{1}{1x2}=\frac{1}{1x\left(1+1\right)}=\frac{1}{1}-\frac{1}{1+1}=\frac{1}{1}-\frac{1}{2}\)
\(\frac{1}{2x3}=\frac{1}{2x\left(2+1\right)}=\frac{1}{2}-\frac{1}{2+1}=\frac{1}{2}-\frac{1}{3}\)
.......
\(\frac{1}{Xx\left(X+1\right)}=\frac{1}{X}-\frac{1}{X+1}\)
Do đó \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{Xx\left(X+1\right)}=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{X}-\frac{1}{X+1}\)
\(=\frac{1}{1}-\frac{1}{X+1}=1-\frac{1}{X+1}=\frac{X+1}{X+1}-\frac{1}{X+1}=\frac{X}{X+1}\)
Vì \(\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{Xx\left(X+1\right)}=\frac{996}{997}\)
nên \(\frac{X}{X+1}=\frac{996}{997}\)
\(\frac{X}{X+1}=\frac{996}{996+1}\)
Vậy X=996
\(\frac{1}{1x2}\)+\(\frac{1}{2x3}\)+\(\frac{1}{3x4}\)+...+\(\frac{1}{yx\left(y+1\right)}\)=\(\frac{996}{997}\)
Ai nhanh mình tick nè !
\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{y\times\left(y+1\right)}=\frac{996}{997}\)
\(\Leftrightarrow1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{y}-\frac{1}{y+1}=\frac{996}{997}\)
\(\Leftrightarrow1-\frac{1}{y+1}=\frac{996}{997}\)
\(\Leftrightarrow\frac{1}{y+1}=1-\frac{996}{997}=\frac{1}{997}\)
\(\Leftrightarrow y+1=997\Leftrightarrow y=996\)
Vậy y = 996
1/1×2 + 1/2×3 + 1/3×4 + ... + 1/ y x (y+1) =996/997
1-1/2+1/2-1/3+1/3-1/4+...+1/y - 1/y+1 =996/997
1-1/y+1=996/997
1/ y+1 =1-996/997
1/y+1 = 997/997-996/997
1/y+1=1/997
=> y+1 =997
y=997-1
y=996
Vậy y = 996
1/1.2+1/2.3+....+1/x.(x+1)=996/997
1/1.2 + 1/2.3 + ... + 1/x.(x+1) = 996/997
1 - 1/2 + 1/2 - 1/3 + ... + 1/x - 1/x+1 = 996/997
1 - 1/x+1 = 996/997
1/x+1 = 1 - 996/997
1/x+1 = 1/997
=> x + 1 = 997
x = 997 - 1
x = 996
Vậy x = 996
\(=>1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{996}{997}\)
\(=>1-\frac{1}{x+1}=\frac{996}{997}\)
\(=>\frac{x+1-1}{x+1}=\frac{996}{997}\)
\(=>\frac{x}{x+1}=\frac{996}{996+1}\)
=>x=996
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{x\left(x+1\right)}=\frac{996}{997}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{996}{997}\)
\(1-\frac{1}{x+1}=\frac{996}{997}\)
\(\frac{1}{x+1}=1-\frac{996}{997}\)
\(\frac{1}{x+1}=\frac{1}{997}\)
=> x + 1 = 997
=> x = 997 - 1
=> x = 996
x-2/995 + x/997 = x-1/996 + x+1/998
tim:1/1*2+1/2*3+1/3*4+...+1/x*(x+1)=996/997
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x.\left(x+1\right)}=\frac{996}{997}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{996}{997}\)
\(1-\frac{1}{x+1}=\frac{996}{997}\)
\(\frac{1}{x+1}=1-\frac{996}{997}\)
\(\frac{1}{x+1}=\frac{1}{997}\)
\(\Rightarrow x+1=997\)
\(x=997-1\)
\(x=996\)
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/x - 1/x + 1 = 996/997
Tìm x
tìm x biết
a, (1/1x2+1/2x3+1/5x4+...+1/99x100) X=1/1x2+2x3+3x4+...+98x99
b, X/1x3+X/3x5+X/5x7+...+X/2013x2015=4/2015
c, X+1/2015+X+2/2016=X+3/2017+X+4/2018
b) \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+...+\frac{1}{2013.2015}\)
\(=\frac{1}{2}\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{2013.2015}\right)\)
\(=\frac{1}{2}\left(\frac{3-1}{1.3}+\frac{5-3}{3.5}+\frac{7-5}{5.7}+...+\frac{2015-2013}{2013.2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2013}-\frac{1}{2015}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{2015}\right)=\frac{1007}{2015}\)
Phương trình tương đương với:
\(\frac{1007X}{2015}=\frac{4}{2015}\Leftrightarrow X=\frac{4}{1007}\)
c) \(\frac{x+1}{2015}+\frac{x+2}{2016}=\frac{x+3}{2017}+\frac{x+4}{2018}\)
\(\Leftrightarrow\frac{x+1}{2015}-1+\frac{x+2}{2016}-1=\frac{x+3}{2017}-1+\frac{x+4}{2018}-1\)
\(\Leftrightarrow\frac{x-2014}{2015}+\frac{x-2014}{2016}=\frac{x-2014}{2017}+\frac{x-2014}{2018}\)
\(\Leftrightarrow x-2014=0\)
\(\Leftrightarrow x=2014\)
X + 1 / 1000 + x + 2 /999 + x + 3/998 + x + 4 /997 + x + 5/ 996 + x + 6/995 +6 =0
Bài này đề bài là giải phương trình hở bạn :
Gỉai
Phương trình đẫ cho trên đề bài tương đương với :
\(\frac{x+1}{1000}+1+\frac{x+2}{999}+1+\frac{x+3}{998}+1+\frac{x+4}{997}+1+\frac{x+5}{996}+1+\frac{x+6}{995}+1=0\)
\(\Leftrightarrow\frac{x+1001}{1000}+\frac{x+1001}{999}+\frac{x+1001}{998}+\frac{x+1001}{997}+\frac{x+1001}{996}+\frac{x+1001}{995}=0\)
\(\Leftrightarrow\left(x+1001\right)\left(\frac{1}{1000}+\frac{1}{999}+\frac{1}{998}+\frac{1}{997}+\frac{1}{996}+\frac{1}{995}\right)=0\)
\(\Leftrightarrow x=-1001\)
Vậy nghiêm của phương trình là : \(x=-1001\)
Chúc bạn học tốt !!!
hoang viet nhat
Làm thiếu giải thích
Tìm x biết 1/1x2 + 1/2x3 + 1/3x4 + ... + 1/X(X+1) = 99/100
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{x\left(x+1\right)}=\frac{99}{100}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{x}-\frac{1}{x+1}=\frac{99}{100}\)
\(1-\frac{1}{x+1}=\frac{99}{100}\)
=> \(\frac{1}{x+1}=1-\frac{99}{100}=\frac{1}{100}\)
=> x+1 = 100
=> x = 100 - 1
=> x = 99