Cho p,q là các số nguyên tố sao cho p>q>3 và p-q=2.CMR p+q chia hết cho 12
cho các số nguyên tố p, q lớn hơn 3 sao p^2+q là số chính phương. CMR p^2+q chia hết cho 12
Cho p,q là các số nguyên tố > 3 thõa mãn p = q+2
CMR: (p + q) chia hết cho 12
Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2 (k thuộc N)
+) Nếu q = 3k+1 => p = 3k+1+2 = 3k+3 chia hết cho 3 (loại vì p là số nguyên lớn hơn 3)
+) Nếu q = 3k+2 => p = 3k+2+2 = 3k+4
Vì q là số nguyên tố lớn hơn 3 nên k lẻ => k + 1 chẵn => k+1 chia hết cho 2
Ta có: p + q = (3k+4) + (3k+2) = 6k + 6 = 6(k + 1) chia hết cho 12 (vì k+1 chia hết cho 2) (đpcm)
cho p,q lá 2 số nguyên tố lớn hơn 3 và p-q = 2. cmr: p+q chia hết cho 12
=>1 thừa số :12 dư 11 và 1thua so :12 dư 1
=>p+q chia het 12
Vì q nguyên tố, q > 3 nên q có dạng 6k + 1 hoặc 6k + 5 \(\left(k\inℕ\right)\)
+)Nếu \(q=6k+1\)thì \(p=q+2=6k+1+2=6k+3=3\left(2k+1\right)⋮3\)
Mà p > 3 nên p là hợp số (loại)
+)Nếu \(q=6k+5\)thì \(p=q+2=6k+5+2=6k+7\)
suy ra \(p+q=\left(6k+5\right)+\left(6k+7\right)=12k+12=12\left(k+1\right)⋮12\)
Vậy \(p+q⋮12\left(đpcm\right)\)
a) Cho a là số nguyên tố lớn hơn 6. CMR: \(a^2-1\)chia hết cho 24
b) CMR: nếu a và b là các số nguyên tố lớn hơn 3 thì \(a^2-b^2\)chia hết cho 24
c) Tìm điều kiện của số tự nhiên a để \(a^4-1\)chia hết cho 240
Cho p;q là các số nguyên tố >3 CMR
a. p^2-1 chia hết cho 24
b. p^2-q^2 chia hết cho 24
Cho p,q là các số nguyên tố lớn hơn 3 thoản mãn p – q = 2. Chứng minh p + q chia hết cho 12.
Vì q là số nguyên tố lớn hơn 3 nên q có dạng 3k+1 hoặc 3k+2. (\(k\in N\)*)
Nếu q=3k+1 thì p=q+2=3k+3. Khi đó p chia hết cho 3 nên không phải số nguyên tố (loại)
Nếu q=3k+2 thì p=q+2=3k+4. Khi đó p+q=6k+6=6(k+1)
Vì q=3k+2 là số nguyên tố nên k là số lẻ (nếu k chẵn thì q chia hết cho 2). Khi đó k có dạng 2m+1 (\(m\in N\)*)
Suy ra p+q=6(2m+1+1)=12(m+1) chia hết cho 12 (đpcm)
Cho p;q là các số nguyên tố >3 thỏa mãn p=q+2. Chứng minh (p+q) chia hết cho 12
vi q la so nguyen to >3 nen se co dang 3k+1 va 3k+2 (k thuoc N*)
neu q=3k+1 thi p=3k+3 nen p chia het cho 3 (loai)
khi q=3k+2 thi p=3k+4
q la so nguyen to >3 nen k la so le
ta co p+q=6(k+1) chia het cho 12