Cho tam giác ABC có AB=5cm, BC =7 cm, và điểm H trên cạnh BC thỏa mãn có BH =3cm, AH=4cm.Tính độ dài cạnh AC và góc C
Cho tam giác ABC có đường cao AH ( H thuộc cạnh BC) Biết A B = 3 c m , A C = 5 c m . So sánh độ dài BH và HC
A. BH < HC
B. BH = HC
C. BH > HC
D. Không so sánh được
Vì AB < AC ⇒ BH < HC (quan hệ giữa đường xiên và hình chiếu). Chọn A
Bài 1: Cho tam giác ABC cân tại B, kẻ CH vuông góc AB. Biết AH= 1cm, BH= 4cm. Tính độ dài AC.
Bài 2: Cho tam giác ABC vuông tại A. Cạnh AB= 5cm đường cao AH, BH= 3cm, CH= 8cm. Tính AC.
Bài 3: Cho tam giác ABC vuông tại A, có \(\frac{AB}{BC}=\frac{3}{5}\)và AC= 16cm. Tính độ dài các cạnh AB=BC.
Bài 1: (bạn tự vẽ hình vì hình cũng dễ)
Ta có: AB = AH + BH = 1 + 4 = 5 (cm)
Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)
Xét tam giác BCH vuông tại H có:
\(HB^2+CH^2=BC^2\left(pytago\right)\)
\(4^2+CH^2=5^2\)
\(16+CH^2=25\)
\(\Rightarrow CH^2=25-16=9\)
\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)
Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé
Bài 2: Sử dụng pytago với tam giác ABH => AH
Sử dụng pytago với ACH => AC
1/ Một tam giác vuông cân có cạnh huyền bằng 2dm.Tính độ dài mỗi cạnh góc vuông
2/Cho tam giác ABC có AH vuông góc với BC,AB=8cm,AC=13cm,HB=4cm.Tính độ dài HC
3/Cho tam giác ABC cân tại A. Kẻ BH vuông góc với AH(H nằm giữa Ava2 C).Tính độ dài BC, biết HA=1cm,HC=8cm
4/ Trên mặt phẳng tọa độ Oxy, vẽ điểm A có tọa độ(3;4). Tính độ dài OA
5/Tam giác có độ dài 3 cạnh bằng$cm,7cm,8cm có là tam giác vuông hay không? Vì Sao?
Mình Ko biết làm mấy bạn giúp mình với!!!!!!!!!!!!!!!!!!!!!!!!
Cho tam giác ABC có AB=3cm,AC=4cm,BC=5cm. Kẻ đường cao AH (\(H\in BC\))
1)CM tam giác ABC vuông
2)Trên cạch BC lấy điểm D sao cho BD=BA ,trên cạnh AC lấy điểm E sao cho AE=AH.Gọi F là giao điểm của DE và AH .CM
a)DE vuông góc AC
b)Tam giác ACF cân
c)BC + AH>AC+AB
AB = 3 => AB^2 = 3^3 = 9
AC = 4 => AC^2 = 4^2 = 16
=> AB^2 + AC^2 = 9 + 16 = 25
BC = 5 => BC^2 = 5^2 = 25
=> AB^2 + AC^2 = BC^2
=> tam giác ABC vuông tại A (đl PTG đảo)
cho tam giác ABC có AB=3cm, AC=4cm, BC=5cm. Kẻ AH vuông góc với Bc ( H thuộc BC ). trên cạnh BC lấy điểm D sao cho BD=BA, trên canh AC lấy điểm M sao cho AM=AH. Gọi N là giao điểm của DM và AH.
a) chứng minh tam giác ABC vuông.
b) chứng minh tam giác ACN cân
a: BC^2=AB^2+AC^2
=>ΔABC vuông tại A
b: góc MAD+góc BAD=90 độ
góc DAH+góc BDA=90độ
góc BAD=góc BDA
=>góc MAD=góc HAD
Xét ΔAHD và ΔAMD có
AH=AM
góc HAD=góc MAD
AD chung
=>ΔAHD=ΔAMD
=>góc AMD=90 độ
Xét ΔAMN vuông tại M và ΔAHC vuông tại H có
AM=AH
góc MAN chung
=>ΔAMN=ΔAHC
=>AN=AC
=>ΔANC cân tại A
Cho tam giác ABC, kẻ AH vuông góc BC, biết AB=5cm, BH=3cm, BC=8cm. Tính độ dài các cạnh AH, HC, AC
Hình bé tự vẽ nhá.
Áp dụng định lý Py-ta-go vào tam giác ABH vuông tại H,có :
AH2 +BH2 =AB2
AH2 = AB2 - BH2
AH2 = 52 - 32
=>. AH2 = 16
AH = 4 (cm)
Theo đề, có : AH vuông góc với BC
=> H thuộc BC
=> BH + HC = BC
HC = 8 - 3
HC = 5 (cm)
Áp dụng định lý Py-ta-go vào tam giác AHC vuông tại H, có :
AH2 + HC2 = AC2
42 + 52 = AC2
=> AC2 = 41
AC = \(\sqrt{41}\)
Áp dụng đ.lí pytago trong tam giác vuông ABH ta có;
AH2+BH2=AB2
=>AH2=AB2-BH2=52-32
=>AH2=25-9=16
=>AH=+(-)4
mà AH>0 =>AH=4 cm
Lại có;
BH+HC=BC
=>HC=BC-BH=8-3
=>HC=5 cm
Áp dụng đ.lí pytago trong tam giác vuông AHC ta có:
AC2=AH2+HC2
=>AC2=42+52=16+25
=>AC2=41
=>AC=+(-)\(\sqrt{41}\)
Mà AC >0 =>AC=\(\sqrt{41}\)cm
Vậy AH=4 cm; HC=5 cm ; AC= \(\sqrt{41}\)cm
(AH)
Tam giác ABH vuông tại H
=> BA2=AH2+BH2
<=> AH2=BA2-BH2=52-32=25-9=16
AH=4 cm
(HC)
Ta có BH+HC=BC
=> HC=BC-BH=8-3=5cm
(AC)
Trong tam giác AHC vuông tại H:
=> AC2=AH2+HC2=42+52=41
AC=\(\sqrt{41}cm\)
tik nhá các bn
cho tam giác ABC, kẻ AH vuông góc BC. biết AB = 5cm; BH = 3cm; BC = 8cm. tính độ dài các cạnh AH, HC, AC?
- Ta có tam giác ABC vuông tại H
Áp dụng định lí Pi-ta-go có:
\(AB^2-BH^2=AH^2=5^2-3^2=16\Rightarrow AH=4\)
Tương tự ta có:...(bn tự làm)
Tam giác AHC vuông tại H
=> cũng như trên
Tự vẽ nhé
Áp dụng định lí Pi-ta-go vào tam giác ABH vuông tại H , ta có:
AH\(^2\)+ BH\(^2\)= AB\(^2\)
AH\(^2\)= \(AB^2-BH^2\)
\(AH^2=5^2-3^2\)
\(=>AH^2=16\)
\(AH=4cm\)
Theo đề, ta có: AH vuông góc với BC
=> H thuộc BC
=> BH + HC = BC
HC = 8 - 3
HC=5 cm
Áp dụng định lý Pi-ta-go vào tam giác AHC vuông tại H, ta có:
\(AH^2+HC^2=AC^2\)
\(4^2+5^2=AC^2\)
=> \(AC^2=41\)
=> \(AC=\sqrt{41}\)
+) Áp dụng định lí Pytago vào \(\Delta ABH\)vuông tại H có
\(AB^2=BH^2+AH^2\)
\(AH^2=AB^2-BH^2\)
\(AH^2=5^2-3^2=16\)
\(AH=4\left(cm\right)\)
+) HC = BC - BH
HC = 8 - 3
HC = 5 (cm)
+) Áp dụng định lí Pytago vào \(\Delta ACH\)vuông tại H có
\(AC^2=AH^2+HC^2\)
\(AC^2=3^2+5^2=34\)
\(AC=\sqrt{34}\)
Vậy AH = 4 (cm); HC = 5 (cm); \(AC=\sqrt{34}\)
Cho tam giác ABC vuông tại A có đường cao AH.Cho biết: AB=15cm, AH=12cm
a) CM: tam giác ABH và tam giác CHA đồng dạng
b) Tính độ dài các đoạn thẳng BH,HC,AC ?
c) Trên cạnh AC lấy điểm E sao cho CE=5cm, trên cạnh BC lấy điểm F sao cho CF=4cm. Chứng minh tam giác CEF vuông ?
d) CM: CE.CA=CF.CB ?
a: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạngvới ΔHCA
b: \(BH=\sqrt{15^2-12^2}=9\left(cm\right)\)
BC=15^2/9=25(cm)
\(AC=\sqrt{25^2-15^2}=20\left(cm\right)\)
c: CE/CB=CF/CA
góc C chung
=>ΔCEF đồng dạng với ΔCBA
=>góc CFE=góc CAB=90 độ
=>ΔCEF vuông tại F
d: CE/CB=CF/CA
=>CE*CA=CF*CB
Cho tam giác ABC có AB = 3cm; AC = 4cm; BC = 5cm. Kẻ đường cao AH( H thuộc BC).
1) Chứng tỏ tam giác ABC là tam giác vuông.
2) Trên cạnh BC lấy điểm D sao cho BD = BA, trên cạnh AC lấy điểm E sao cho AE = AH. Gọi F là giao điểm của DE và AH. Chứng minh:
a) DE vuông góc với AC.
b) Tam giác ACF là tam giác cân.
c) BC + AH > AC+ AB