Cho `a,b,c,k` là các số tự nhiên thỏa mãn `a^3+b^3+c^3=a+b+c+k^2-2k+1` Chứng minh `k-1 vdots 3`
a) Tìm tất cả các số tự nhiên \(k\) sao cho \(2k+1\) và \(4k+1\) đều là các số chính phương.
b) Với mỗi số tự nhiên \(k\) thỏa mãn đề bài, chứng minh rằng \(35|k^2-12k\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
\(\left(b+c\right)\sqrt[k]{\frac{bc+1}{a^2+1}}+\left(a+c\right)\sqrt[k]{\frac{ac+1}{b^2+1}}+\left(a+b\right)\sqrt[k]{\frac{ab+1}{c^2+1}}\ge6\)
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có....
.
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có
Cho a,b,c là các số thực dương thỏa mãn a+b+c = 3
Chứng minh rằng với mọi k > 0 ta luôn có.
a) Cho x,y và k là các số thỏa mãn điều kiện : \(\hept{\begin{cases}x+y=2k-1\\x^2+y^2=2k^2+4k-1\end{cases}}\) . Xác định k để tích x,y đạt GTNN
b) Cho \(P=\left(a+b+c\right)^3-4\left(a^3+b^3+c^3\right)-12abc\). Ba số a,b,c có thể là độ dài ba cạnh của một tam giác hay không nếu P < 0
Cho K là số tự nhien khác 0
Số tự nhiên A gầm 2K chứ số 1
Số tự nhiên B gồm K chữ số 2
Số tự nhiên C gồm K chữ số 1
Chứng minh : A - B = (3c )2
Lấy k = 2 chẳng hạn, khi đó A = 1111, B = 22, C = 11.
(3C)2 + B = 9.112 + 2.11 = (9.11 + 2).11 = (100 + 1).11 = 100.11 + 11 = 1100 + 11.
Ta thấy số số 0 của 1100 bằng số số 1 của 11, nên ta được tổng gồm 4 chữ số 1.
Tổng quát lên ta được kết quả như đề bài yêu cầu.
bài 1: Cho p là số nguyên tố lớn hơn 3 . chứng minh (p+5)(p+7)chia hết cho 24
Bài 2 :Tìm các số tự nhiên m và n sao cho (2m+1)(2n+1)=91
bài 3: Tìm số nguyên tố p sao cho cả p+4 và p+8 đều là số nguyên tố
Bài 4 :Tìm tất cả các cặp số nguyên tố ( x, y) thỏa mãn đẳng thức x2 - 2y2 =1
bài 5: cho a,b E Z ; a.b khác 0 , chứng minh ( 5a + 3b ; 13a + 8b ) = (a;b)
Bài 6 : Cho a , a+k , a+2k là 3 số nguyên tố lớn hon 3 . chứng minh : K chia hết cho 3
Chứng minh rằng :
a) Nếu q và p là 2 số tự nhiên lớn hơn 3 thì p2 - q2 chia hết cho 24
b) Nếu a, a+k , a+2k ( a,k thuộc N* ) là các số tự nhiên > 3 thì k chia hết cho 6
Liệt kê các phần tử của các tập hợp:
a/. Tập A các số tự nhiên chia hết cho 3 và nhỏ hơn 25
b/.B= {n ∈ N|(n-1)(n+2) ≤15}
c/ C= {x ∈ Z|(x+1)(3x2-10x+3)=0}
d/ D={2k+1|k∈ Z,|k| ≤2}
Cho k E N*.Số tự nhiên a gồm 2k chữ số 1 và số tự nhiên b gồm k chữ số 2 .Chứng minh a-b là 1
`a,b,c` là các số nguyên thỏa mãn `a+b+2024c=c^3`. Chứng tỏ `a^3 +b^3 +c^3 \vdots 6`.
Giải thích các bước giải:
a+b+2024c=c3
⇔a+b+c=c3−2023c
⇔a+b+c=c(c2−2023)
VP =c(c2−2023)
=c(c2−1−2022)
=c[(c−1)(c+1)−2022]
Vì (c−1)c(c+1) là 3 số nguyên liên tiếp ⇒(c−1)c(c+1)⋮2⋮3
Mà 2022c⋮2⋮3⇒(c−1)c(c+1)⋮2⋮3
⇒a+b+c⋮2⋮3(1)
Xét hiệu a3+b3+c3−a−b−c
=a(a2−1)+b(b2−1)+c(c2−1)
=(a−1)a(a+1)+(b−1)b(b+1)+(c−1)c(c+1)
Vì (a−1,a,a+1);(b−1,b,b+1);(c−1,c,c+1) là các nhóm 3 số nguyên liên tiếp
⇒(a−1)a(a+1)+(b−1)b(b+1)+(c−1)c(c+1)⋮2⋮3
⇒a3+b3+c3−a−b−c⋮2⋮3(2)
Từ (1) và (2)⇒a3+b3+c3⋮2⋮3
Mà ƯCLN(2,3) = 1 ⇒a3+b3+c3⋮6
CMR:
a) Nếu b là số nguyên tố khác 3 thì A=3n+2+2014b2 là hợp số với mọi số tự nhiên n
b) Nếu p và 8p2+1 là các số nguyên tố thì 8p2+2p+1 là số nguyên tố
c) Nếu k là số tự nhiên lớn hơn 1 thỏa mãn k2+4 và k2+16 là các số nguyên tố thì k chia hết cho 5