Tính tổng \(S=2014+\frac{2014}{1+2}+\frac{2014}{1+2+3}+\frac{2014}{1+2+3+4}\)\(+...+\frac{2014}{1+2+3+...+10000}\)
Tính:
A= 2014 + \(\frac{2014}{1+2}+\frac{2014}{1+2+3}+\frac{2014}{1+2+3+4}+........+\frac{2014}{1+2+3+4+.....+2013}\)
\(A=2014.\left(1+\frac{1}{1+2}+\frac{1}{1+2+3}+...+\frac{1}{1+2+3+...+2013}\right)\)
\(A=2014.\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{1007.2013}\right)\)
\(A=2.2014.\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{2013.2014}\right)\)
\(A=2.2014.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2013.2014}\right)\)
\(A=2.2014.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2013}-\frac{1}{2014}\right)\)
\(A=2.2014.\left(1-\frac{1}{2014}\right)\)
\(A=2.2014.\frac{2013}{2014}\)
\(A=\frac{2.2014.2013}{2014}\)
\(A=2.2013\)
\(A=4026\)
a) Cho tổng gồm 2014 số hạng
S= \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}\)
CMR S<1
\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+....+\frac{2014}{4^{2014}}\)
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\)
\(4S-S=\left(1+\frac{2}{4}+\frac{3}{4^2}+\frac{4}{4^3}+...+\frac{2014}{4^{2013}}\right)-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}\right)\)
\(3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)
\(12S=4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\)
\(12S-3S=\left(4+1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2012}}-\frac{2014}{4^{2013}}\right)-\left(1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\right)\)
\(9S=4-\frac{2014}{4^{2013}}-\frac{1}{4^{2013}}+\frac{2014}{4^{2014}}\)
\(9S=4-\frac{4028}{4^{2014}}-\frac{4}{4^{2014}}+\frac{2014}{4^{2014}}\)
\(9S=4-\frac{2010}{4^{2014}}< 4\)
\(\Rightarrow9S< 4\)
\(\Rightarrow S< \frac{4}{9}< 1\)(đpcm)
Ta có :
\(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\)( 1 )
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+...+\frac{2014}{4^{2013}}\)( 2 )
Lấy ( 2 ) - ( 1 ) ta được :
\(3S=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)
gọi \(B=1+\frac{1}{4}+\frac{1}{4^2}+...+\frac{1}{4^{2013}}\)( 3 )
\(4B=4+1+\frac{1}{4}+...+\frac{1}{4^{2012}}\) ( 4 )
Lấy ( 4 ) - ( 3 ) ta được :
\(3B=4-\frac{1}{4^{2013}}\)
\(\Rightarrow B=\frac{4-\frac{1}{4^{2013}}}{3}=\frac{4}{3}-\frac{1}{4^{2013}.3}\)
\(\Rightarrow3S=\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}\)
\(\Rightarrow S=\frac{\frac{4}{3}-\frac{1}{4^{2013}.3}-\frac{2014}{4^{2014}}}{3}=\frac{4}{9}-\frac{1}{4^{2013}.9}-\frac{2014}{4^{2014}.3}< \frac{4}{9}< 1\)
vậy \(S< 1\)
Cho tổng gồm 2014 số hạng, \(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}\). Chứng minh rằng \(S< \frac{1}{2}\).
Xét \(4S=1+\dfrac{2}{4}+\dfrac{3}{4^2}+\dfrac{4}{4^3}+...+\dfrac{2014}{4^{2013}}\)
=> \(3S=4S-S=\left(1+\dfrac{2}{4}+\dfrac{3}{4^2}+...+\dfrac{2014}{4^{2013}}\right)-\left(\dfrac{1}{4}+\dfrac{2}{4^2}+...+\dfrac{2014}{4^{2014}}\right)\)
=> \(3S=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}-\dfrac{2014}{4^{2014}}< 1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}\)
Đặt \(A=1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}\)
=> \(4A=4+1+\dfrac{1}{4}+...+\dfrac{1}{4^{2012}}\)
=> \(3A=4A-A=\left(4+1+\dfrac{1}{4}+...+\dfrac{1}{4^{2012}}\right)-\left(1+\dfrac{1}{4}+\dfrac{1}{4^2}+...+\dfrac{1}{4^{2013}}\right)\)
=> \(3A=4-\dfrac{1}{4^{2013}}< 4\)
=> \(A< \dfrac{4}{3}\)
=> \(3S< \dfrac{4}{3}\)
=> \(S< \dfrac{4}{9}< \dfrac{1}{2}\)
\(4S=1+\frac{2}{4}+\frac{3}{4^2}+....+\frac{2014}{4^{2013}}\)
\(4S-S=3S=1+\frac{2}{4}+\frac{3}{4^2}+....+\frac{2014}{4^{2013}}-\left(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+....+\frac{2014}{4^{2014}}\right)\)
\(3S=1+\left(\frac{2}{4}-\frac{1}{4}\right)+\left(\frac{3}{4^2}-\frac{2}{4^2}\right)+......+\left(\frac{2014}{4^{2013}}-\frac{2013}{4^{2013}}\right)-\frac{2014}{4^{2014}}\)
\(3S=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+.....+\frac{1}{4^{2013}}-\frac{2014}{4^{2014}}\)
đặt \(A=1+\frac{1}{4}+\frac{1}{4^2}+\frac{1}{4^3}+....+\frac{1}{4^{2023}}\)
\(4A-A=4+1+\frac{1}{4}+\frac{1}{4^2}+.....+\frac{1}{4^{2022}}-\left(1+\frac{1}{4}+\frac{1}{4^2}+....+\frac{1}{4^{2023}}\right)\)
\(3A=4-\frac{1}{4^{2023}}\)
\(A=\frac{4}{3}-\frac{1}{3.4^{2023}}\)
\(\Rightarrow3S=\frac{4}{3}-\frac{1}{3.4^{2023}}-\frac{2014}{4^{2024}}\)
\(\Rightarrow S=\frac{4}{9}-\frac{1}{9.4^{2023}}-\frac{2014}{3.4^{2024}}\)
do \(\frac{4}{9}< \frac{4}{8}=\frac{1}{2}\)
\(\Rightarrow S=\frac{4}{9}-\frac{1}{9.4^{2023}}-\frac{2014}{3.4^{2024}}< \frac{4}{8}=\frac{1}{2}\left(đpcm\right)\)
Tính Tổng:
A = 2014 + \(\frac{2014}{1+2}+\frac{2014}{1+2+3}+.....+\frac{2014}{1+2+3+...+2013}\)
A = 2014 (\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+.....+\frac{1}{1+2+3+....+2013}\))
A = 2014(1+1/3 + 1/6 +....+ 1/1007.2013)
A = 2014( 2/2 + 2/6 + 2/12 +.....+ 2/2013.2014)
A = 2.2014( 1/2 + 1/6 +....+ 1/2013.2014)
A = 2.2014( 1/1.2 + 1/2.3 +.....+ 1/2013.2014)
A = 2.2014( 1 - 1/2 + 1/2 - 1/3 +.....+ 1/2013 - 1/2014)
A = 2.2014( 1 - 1/2014)
A = 2.2014 . 2013/2014
A = 2.2014.2013/2014
A = 4026
Câu hỏi của h - Chuyên mục hỏi đáp - Giúp tôi giải toán. - Học toán với OnlineMath
Cho tổng gồm 2014 số hạng: S= \(\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+...+\frac{2014}{4^{2014}}\).CMR: S<\(\frac{1}{2}\)
Tính nhanh
A = \(\left(\frac{2014}{2}+\frac{2014}{3}+\frac{2014}{4}+...+\frac{2014}{2015}\right):\left(\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{1}{2014}\right)\)
Tính :
\(\frac{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+......+\frac{1}{2014}+2014}{1+\frac{1}{2}+\frac{1}{3}+.....+\frac{1}{2014}}\)
Ta có: \(\frac{\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...\frac{1}{2014}+2014}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=
= \(\frac{\left(\frac{2013}{2}+1\right)+\left(\frac{2012}{3}+1\right)+...+\left(\frac{1}{2014}+1\right)+1+2014}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=
= \(\frac{\frac{2015}{2}+\frac{2015}{3}+...+\frac{2015}{2014}+2015}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=\(\frac{2015.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}+1\right)}{1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2014}}\)=2015
cho tổng băngf 2014 số hạng :
S=\(\frac{1}{4}+\frac{2}{^{4^2}}+\frac{3}{^{4^3}}+...+\frac{2014}{4^{2014}}\)
CHỨNG MINH : S<\(\frac{1}{2}\)
Cho tổng gồm 2014 số hạng: \(S=\frac{1}{4}+\frac{2}{4^2}+\frac{3}{4^3}+\frac{4}{4^4}+...+\frac{2014}{4^{2014}}\)
Chứng minh rằng S<0,5.
=>4.S=1+2/4 +3/42+....+2014/42013
=>3.S=1+1/4+1/42+...+1/42013-2014/42014
=>12.S=4+1+1/4+......+1/42012-2014/42013
=>9.S=4-2014/42013-1/42013+2014/42014
=>9.S=4-(2015/42013-2014/42014) mà 2015/42013-2014/42014>0
=>9.S<4
=>S<4/9
=S<4/8
=>S<1/2
=>S<0,5
Vậy S<0,5 (ĐPCM)