tìm các số nguyên x,y sao cho
a) (x+y).(y-2)=5
b) x.(y-4)=12
c) xy-5x-5y=0
Tìm các số nguyên x,y sao cho:
a) ( x+y). (y-2) = 5
b) x.(y-4) = 12
c) xy - 5x - 5y = 0
(Các bạn giải chi tiết giùm mk nha!! Cám ơn nhìu!!)
Bài 1: Tìm các số tự nhiên x; y sao cho 2xy - 5x + 7y - 4 = 0.
Bài 2: Tìm các số tự nhiên x; y sao cho 2xy + x = 5y.
Tìm cặp số nguyên x, y thỏa mãn:
a) x=6y và lxl-lyl=60 b) lxl+lyl<2 c) (x+1)^2+(y+1)^2+(x-y)^2=2
d) xy+5x-7y=35 e) xy+2x-3y=9 f) xy-2x+5y-12=0 ^_^
Tìm các số nguyên x,y thỏa mãn:6xy+4x-9y-7=0
Tìm giá trị nhỏ nhất của A=x^3+y^3+xy với x,y dương thỏa mãn x+y=1
Tìm các số nguyên x,y thỏa mãn 2x^2+1/x^2+y^2/4=4 sao cho xy đạt giá trị lớn nhất
HELP !
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
Tìm số x,y thuộc tập hợp số nguyên, biết:
a, (x - 2) . (x +1) = 0
b, (2x - 1) . (2x +1) = -35
c, (x - 1) . (y + 2) = 7
d, x.(y - 3) = -12
e, xy - 5x - 5y = 0
a) (x - 2)(x + 1) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=2\\x=-1\end{cases}}\)
Vậy...
e) xy - 5x - 5y = 0
=> x(y - 5) - 5y = 0
=> x(y - 5) - 5(y - 5) - 25 = 0
=>(x - 5)(y - 5) = 25 = 1 . 25 = (-1) . (-25) = 5 . 5 = (-5). (-5) (và ngược lại)
Lập bảng :
x - 5 | 1 | 25 | -1 | -25 | 5 | -5 |
y - 5 | 25 | 1 | -25 | -1 | 5 | -5 |
x | 6 | 30 | 4 | -20 | 10 | 0 |
y | 30 | 6 | -20 | 4 | 10 | 0 |
Vậy ...
tìm các số nguyên x, y sao cho : x^2-xy=6x-5y-8
\(x^2-xy=6x-5y-8\)
\(\Rightarrow x^2-xy-6x+5y+8=0\)
\(\Rightarrow\left(x^2-xy-x\right)-\left(5x-5y-5\right)+3=0\)
\(\Rightarrow x\left(x-y-1\right)-5\left(x-y-1\right)=-3\)
\(\Rightarrow\left(x-y-5\right)\left(x-1\right)=-3\)
Từ đó bạn tìm ước thì ra kết quả.Chúc bạn học tốt.
đặt \(x-y=k\)
\(x^2-xy=6x-5y-8\Rightarrow x\left(x-y\right)=x+\left(5x-5y\right)-8\Rightarrow xk=x+5\left(x-y\right)-8\)
\(\Rightarrow xk=x+5k-8\Rightarrow xk=x+5k-5-3\Rightarrow xk-x-5k+5=-3\)
\(\Rightarrow x\left(k-1\right)-5\left(k-1\right)=3\Rightarrow\left(x-5\right)\left(k-1\right)=3\Rightarrow x-5;k-1\inƯ\left(-3\right)=+-1;+-3\)
nếu \(x-5=1\Rightarrow x=6\)thì \(k-1=-3\Rightarrow k=-2\Rightarrow y=x-k=6-\left(-2\right)=8\)
nếu \(x-5=3\Rightarrow x=8\)thì \(k-1=-1\Rightarrow k=0\Rightarrow y=x-k=8-0=8\)
nếu \(x-5=-1\Rightarrow x=4\)thì \(k-1=3\Rightarrow k=4\Rightarrow y=x-k=4-4==0\)
nếu \(x-5=-3\Rightarrow x=2\)thì \(k-1=1\Rightarrow k=2\Rightarrow y=x-k=2-2=0\)
vậy (x;y)=(6;8) (8;8) (4;0) (2;0)
1) TÌM CÁC CẶP SỐ NGUYÊN X VÀ Y BIẾT :
a) ( x + 1 )(y - 2)=0
b)(x+3)(y-6)= -4
c) xy + 5x =4
a, => x+1=0 hoặc y-2=0
=> x=-1 hoặc y=2
Tk mk nha
Tìm x,y nguyên biết: x2 - xy - 5x - 5y + 2 = 0
Tìm cặp số nguyên (x,y) sao cho :
A) xy + 3x - 2y - 7 = 0
B) xy - x + 5y - 7 = 0
C ) x + 2y = xy + 2
ĐKXĐ : x,y ∈ Z
a) xy + 3x - 2y - 7 = 0
<=> x( y + 3 ) - 2( y + 3 ) - 1 = 0
<=> ( y + 3 )( x - 2 ) = 1
Ta có bảng sau :
x-2 | 1 | -1 |
y+3 | 1 | -1 |
x | 3 | 1 |
y | -2 | -4 |
Vậy ( x ; y ) = { ( 3 ; -2 ) , ( 1 ; -4 ) }
b) xy - x + 5y - 7 = 0
<=> x( y - 1 ) + 5( y - 1 ) - 2 = 0
<=> ( y - 1 )( x + 5 ) = 2
Ta có bảng sau :
x+5 | 1 | -1 | 2 | -2 |
y-1 | 2 | -2 | 1 | -1 |
x | -4 | -6 | -3 | -7 |
y | 3 | -1 | 2 | 0 |
Vậy ( x ; y ) = { ( -4 ; 3 ) , ( -6 ; -1 ) , ( -3 ; 2 ) , ( -7 ; 0 ) }
c) x + 2y = xy + 2
<=> x + 2y - xy - 2 = 0
<=> x( 1 - y ) - 2( 1 - y ) = 0
<=> ( x - 2 )( 1 - y ) = 0
<=> \(\hept{\begin{cases}x-2=0\\1-y=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\end{cases}}\)
Vậy ( x ; y ) = ( 2 ; 1 )
à cho mình sửa ý c) một chút nhé
( x - 2 )( 1 - y ) = 0
Với x - 2 = 0 => x = 2 và nghiệm đúng ∀ y ∈ R
Với 1 - y = 0 => y = 1 và nghiệm đúng ∀ x ∈ R