tìm các số nguyên m và n biết rằng:
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
Tìm các số nguyên m và n sao cho:
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\frac{1}{m}-\frac{n}{6}=\frac{1}{2}\)
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\Rightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)
\(\Rightarrow\frac{2}{n}=\frac{m-1}{2}\)
\(\Rightarrow\hept{\begin{cases}2=m-1\\n=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}m=3\\n=2\end{cases}}\)
Câu còn lại làm nốt
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{n}=\frac{m}{2}-\frac{1}{2}\)
\(\Leftrightarrow\frac{2}{n}=\frac{m-1}{2}\)
\(\Leftrightarrow\orbr{\begin{cases}2=m-1\\n=2\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}m=3\\n=2\end{cases}}\)
\(\frac{1}{m}-\frac{n}{6}=\frac{1}{2}\)
\(\Leftrightarrow\frac{n}{6}=\frac{1}{m}-\frac{1}{2}\)
\(\Leftrightarrow\frac{n}{6}=\frac{2-m}{2m}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\6=2m\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-m\\m=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=2-3\\m=3\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}n=-1\\m=3\end{cases}}\)
Tìm m,n nguyên và các số tự nhiên a,b khác 0 biết
\(\frac{a}{5}-\frac{2}{b}=\frac{2}{15}\)
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
\(4.\left(1-x\right)+\frac{1}{2}=\frac{5}{6}+x\)
Tìm các số nguyên n và m biết:
\(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
Gíup nhanh nha trước 1 giờ
Xin lỗi bn nha mik chỉ làm được câu đầu thôi. Mong bn thông cảm.
X=1/3
Giả sử m và n là các số nguyên sao cho:\(\frac{m}{n}=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...-\frac{1}{1334}+\frac{1}{1335}\).Chứng minh rằng m chia hết cho 2003
Tìm số nguyên m, n biết \(\frac{m}{2}-\frac{2}{n}=\frac{1}{2}\)
Chứng minh rằng với mọi số nguyên tố p>2 đề không tồn tại các số nguyên dương m;n thỏa mãn \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\)
C/M rằng với mọi số nguyên tố lẻ p đều ko tồn tại các số nguyên dương m;n thỏa mãn \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\)
Vì p là số nguyên tố lẻ nên p>1.ĐKXĐ m,n khác 0.
Ta có: \(\frac{1}{p}=\frac{1}{m^2}+\frac{1}{n^2}\Leftrightarrow\)\(\frac{1}{p}=\left(\frac{m^2+n^2}{m^2n^2}\right)\Leftrightarrow\)\(\left(m^2+n^2\right)p=m^2n^2\) \(\left(1\right)\)
\(\Leftrightarrow m^2n^2-m^2p-n^2p+p^2=p^2\Leftrightarrow\left(m^2-p\right)\left(n^2-p\right)=p^2\) \(\left(2\right)\)
Từ (1) ta được m hoặc n chia hết p.Giả sử m chia hết cho p. Đặt m2=a2p2 ( a khác 0) nên (2) \(\Leftrightarrow\) \(\left(a^2p^2-p\right)\left(n^2-p\right)=p^2\)
\(\Leftrightarrow\left(a^2p-1\right)\left(n^2-p\right)=p\)
Vì a khác 0 nên a2>0 a2p chia hết p . Vì p>2 nên a2p-1 không chia hết cho p.
Vậy n2-p chia hết cho p nên n chia hết cho p . Đặt n=bp.
Dựa pt đầu ta có \(\frac{1}{p}=\frac{1}{a^2p^2}+\frac{1}{b^2p^2}\Leftrightarrow1=\frac{1}{a^2p}+\frac{1}{b^2p}\)
nên a2p=2 và b2p=2 nên vô lý
tìm 2 số hữu tỉ biết
a,TỔNG=TÍCH=THƯƠNG số thứ nhất và số thứ hai.
b,HIỆU=TÍCH=THƯƠNG số thứ nhất và số thứ hai.
bài 4 tìm m,n nguyên biết
\(\frac{m}{4}-\frac{1}{n}=\frac{1}{2}\)
Bài 1:
a) Gọi hai số cần tìm là a và b \(\left(b\ne0\right)\)
Theo đề bài ta có:
\(a\times b=a:b=a\times\frac{1}{b}\)
Vậy thì \(b=\frac{1}{b}\Rightarrow\orbr{\begin{cases}b=1\\b=-1\end{cases}}\)
Với b = 1, ta có: \(a+1=a\) (Vô lý)
Với b = -1, ta có: \(a-1=a\) (Vô lý)
Vậy không có số hữu tỉ thỏa mãn điều kiện.
b)
Gọi hai số cần tìm là a và b \(\left(b\ne0\right)\)
Theo đề bài ta có:
\(a\times b=a:b=a\times\frac{1}{b}\)
Vậy thì \(b=\frac{1}{b}\Rightarrow\orbr{\begin{cases}b=1\\b=-1\end{cases}}\)
Với b = 1, ta có 2 trường hợp:
TH1: \(a+1=a\) (Vô lý)
TH2: \(1-a=a\Leftrightarrow a=\frac{1}{2}\)
Với b = -1, ta có 2 trường hợp:
TH1: \(a-1=a\) (Vô lý)
TH2: \(-1-a=a\Leftrightarrow a=-\frac{1}{2}\)
Vậy có hai cặp số thỏa mãn điều kiện: \(\left(-1;-\frac{1}{2}\right);\left(1;\frac{1}{2}\right)\)
Bài 2:
\(\frac{m}{4}-\frac{1}{n}=\frac{1}{2}\Leftrightarrow mn-4=2n\)
\(\Leftrightarrow mn-2n=4\Leftrightarrow n\left(m-2\right)=4\)
Do n nguyên nên \(n\inƯ\left(4\right)=\left\{-4;-2;-1;1;2;4\right\}\)
Ta có bảng:
n | - 4 | - 2 | - 1 | 1 | 2 | 4 |
m - 2 | - 1 | - 2 | - 4 | 4 | 2 | 1 |
m | 1 | 0 | -2 | 6 | 4 | 3 |
Vậy các cặp số (m;n) thỏa mãn là: \(\left(1;-4\right);\left(0;-2\right);\left(-2;-1\right);\left(6;1\right);\left(4;2\right);\left(3;4\right)\)
a) Chứng Minh Rằng : E = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2009^2}< 1\)
b) Tìm Các Số Nguyên n để : \(\frac{2n-1}{n+8}-\frac{n-14}{n+8}\)Là Số Nguyên