Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Huỳnh Bá Tuân
Xem chi tiết

Ta có: \(S=\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots-\frac{100}{3^{100}}\)

=>\(3A=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots-\frac{100}{3^{99}}\)

=>\(3A+A=1-\frac23+\frac{3}{3^2}-\frac{4}{3^3}+\cdots-\frac{100}{3^{99}}+\frac13-\frac{2}{3^2}+\frac{3}{3^3}-\frac{4}{3^4}+\cdots-\frac{100}{3^{100}}\)

=>\(4A=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

Đặt \(B=-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}\)

=>\(3B=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}\)

=>\(3B+B=-1+\frac13-\frac{1}{3^2}+\cdots-\frac{1}{3^{98}}-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}=-1-\frac{1}{3^{99}}=\frac{-3^{99}-1}{3^{99}}\)

=>\(4B=\frac{-3^{99}-1}{3^{99}}\)

=>\(B=\frac{-3^{99}-1}{4\cdot3^{99}}\)

Ta có: \(4A=1-\frac13+\frac{1}{3^2}-\frac{1}{3^3}+\cdots-\frac{1}{3^{99}}-\frac{100}{3^{100}}\)

\(=1+\frac{-3^{99}-1}{4\cdot3^{99}}-\frac{100}{3^{100}}=1+\frac{-3^{100}-3-400}{4\cdot3^{100}}=1-\frac14-\frac{403}{4\cdot3^{100}}<\frac34\)

=>\(A<\frac{3}{16}\)

\(\frac{3}{16}<\frac{3.2}{16}=\frac15\)

nên \(A<\frac15\)

Xem chi tiết
Nguyen Dieu Linh
Xem chi tiết
huỳnh nguyen khoi
Xem chi tiết
Nguyễn Mai Phương
25 tháng 7 2020 lúc 15:12

(100^99+99^100)^100

(100^100+99^100)^99

ta có : (100^99+99^100)^100=100^9900+99^10000

           (100^100+99^100)^99=100^9900+99^9900

=)100^9900=100^9900; 99^10000>99^9900(vì 10000>9900)

=)(100^99+99^100)^100>(100^100+99^100)^99

Khách vãng lai đã xóa
Mai Trung Hiếu
Xem chi tiết
Trịnh Thành Long
Xem chi tiết
Nguyen Mai Binh
Xem chi tiết
Le Thi Khanh Huyen
8 tháng 7 2016 lúc 13:05

Ta có:

\(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{6}< \frac{6}{7}\)

\(...\)

\(\frac{99}{100}< \frac{100}{101}\)

\(\Rightarrow\frac{1}{2}.\frac{3}{4}.\frac{5}{6}...\frac{99}{100}< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}...\frac{100}{101}\)

\(\Rightarrow M< N\)

lữ đức lương
Xem chi tiết
Pham Van Hung
1 tháng 1 2019 lúc 14:39

\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^3}+\frac{4}{2^4}+...+\frac{98}{2^{98}}+\frac{99}{2^{99}}+\frac{100}{2^{100}}\)

\(2A=1+\frac{2}{2}+\frac{3}{2^2}+\frac{4}{2^3}+...+\frac{99}{2^{98}}+\frac{100}{2^{99}}\)

\(A=1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\) (lấy 2A - A = A)

Đặt \(B=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{98}}+\frac{1}{2^{99}}\)

\(2B=2+1+\frac{1}{2}+...+\frac{1}{2^{97}}+\frac{1}{2^{98}}\)

\(B=2B-B=2-\frac{1}{2^{99}}\)

Do đó: \(A=2-\frac{1}{2^{99}}-\frac{100}{2^{100}}< 2\)